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Supplementary Methods 
 
Sequence data 
We extracted datasets for eukaryotes, Gram-positive bacteria and Gram-negative bacteria 
from the Uniprot Knowledgebase release 2010_051. Only reviewed entries (i.e. from 
UniProtKB/SwissProt) were used, and hypothetical proteins were not included. We 
discarded sequences shorter than 30 amino acids. Fragments were allowed as long as 
their N-terminal 70 amino acids were complete (i.e. they had no “FT NON_TER” line 
pointing to position 1 and no “FT NON_CONS” line affecting the first 70 positions). 
Gram-positive bacteria were defined as Firmicutes plus Actinobacteria. We did not 
include Tenericutes (Mycoplasma and related genera), since they do not seem to have a 
type I signal peptidase at all.2 Gram-negative bacteria were defined as all other bacteria. 
 
We only considered positive data (signal peptide sequences) which had experimental 
evidence for the cleavage site. Lipoproteins (cleaved by Lipoprotein signal peptidase)3 
and signal peptides annotated as being Tat-dependent4 were excluded from the bacterial 
sets. Signal peptides from eukaryote and Gram-negative organisms were restricted to 
have a cleavage site between positions 15 and 45. For Gram-positive bacteria, which tend 
to have longer signal peptides, the upper limit was extended to allow a cleavage site at 
position 50. 
 
We extracted two different negative sets. The first consisted of proteins with a subcellular 
location annotated as cytosolic (cytosolic and/or nuclear in eukaryotes) with experimental 
evidence (note that UniProt uses the term “cytoplasm” for cytosol). Proteins with known 
multiple locations (except for cytosolic and nuclear) were not included. The second 
negative set consisted of transmembrane proteins with an annotated transmembrane 
region within the first 70 positions. These had experimental evidence for being single- or 
multi-pass membrane proteins (according to the subcellular location comment), but did 
not necessarily have experimental evidence for the exact position of the transmembrane 
region, as this criterion would have left too few sequences in the set. 
 
All sequences were shortened to the 70 N-terminal amino acids. We then carried out 
homology reduction using algorithm 2 of Hobohm et al.5 and cut-off criteria as described 
previously6, i.e. a local alignment could include up to 17 identical amino acids for 
eukaryotic sequences, while for bacteria up to 21 identities were allowed (Table A). 
  
In order to benchmark SignalP 4.0 against the previous version of SignalP, we assigned a 
subset of each of the positive and negative datasets as “comparison dataset” by 
performing a homology reduction to sequences that were used to train SignalP 3.0 (Table 
A). This means that no sequence in the comparison sets is homologous (according to the 
aforementioned cut-off criteria) to any sequence used to train SignalP 3.0. The 
comparison datasets are also used for calculating performances of other methods. For 
those that are newer than SignalP 3.0 (Philius, SPOCTOPUS, the two MEMSAT 
versions, Signal-CF and Signal-3L), this can lead to slight overestimations of 
performance, as these predictors to some extent have been trained on sequences identical 
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 Signal peptides (SP) Cytosolic or Nuclear Transmembrane (TM) 
 Total Train Comp. Total Train Comp. Total Train Comp.
Euk 3,595(4) 1,640(2) 606(0) 8,956 5,131 1,000* 2,329 989 939
Gram+ 277(1) 208(1) 48(1) 2,914 359 212 186 118 118
Gram– 612(6) 423(4) 104(1) 7,243 908 559 1,054 527 524
 
Table A. Sequences included in datasets for eukaryotes (Euk), Gram-positive bacteria (Gram+) and Gram-
negative bacteria (Gram–). “Total” is the number before homology reduction, “Train” is the homology 
reduced dataset used for training, “Comp.” is the dataset homology reduced against the SignalP 3.0 data, 
used for comparison to SignalP 3.0 and other methods. The numbers in parentheses are sequences that 
include both a signal peptide and a transmembrane region within the first 70 positions. The number marked 
with (*) was artificially reduced to make a more balanced comparison set. 
 
or similar to the sequences in our comparison datasets. The data used to train and test 
SignalP 4.0 are available at http://www.cbs.dtu.dk/services/SignalP/ under the heading 
“Data.” 
 
Neural Networks 
We trained standard feed forward neural networks by the use of a back-propagation 
procedure7 to recognize the signal peptide and the cleavage site in protein sequences. A 
sliding window of up to 41 amino acids was fed into the first layer of the neural network 
and predictions were made for the central position in the window. Amino acids were 
sparsely encoded as an orthogonal vector of length 21, where the last entry represented a 
position outside the protein sequence. In general we trained neural networks for two 
different tasks, one to predict positions within the signal peptide (SP) and another to 
predict the cleavage site in each sequence (CS). The output representing ‘signal peptide’ 
in the SP networks is called the S-score, while the output representing ‘cleavage site’ in 
the CS networks is called C-score (Figure A). 
 
In contrast to the earlier versions of SignalP, where target values of 0 and 1 were used, 
SignalP 4.0 uses target values of 0.1 and 0.9 for incorrect and correct outputs, 
respectively. This creates a visual difference in the output compared to that of SignalP 3.0 
(Figure A). 
 
A number of different architectures were tried. For the SP networks, the symmetrical 
input window was varied from 29 to 41. For the CS networks, the input window was 
asymmetrical with 16 to 21 positions before the putative cleavage site and 1 to 6 
positions after. The size of the hidden layer was varied from 2 to 20 units (Table B). Not 
all intermediate values have been used. In addition to the sequence window inputs, two 
other input types were used: the relative position of the input window in the sequence, 
encoded as a number between 0 and 1, and the composition of the entire input sequence 
(up to 70 residues), expressed as 20 numbers between 0 and 1. For the SP networks, 
networks both with and without these additional inputs were tried, while for the CS 
networks, they were always included, since preliminary tests showed them to be 
advantageous (results not shown). 
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Figure A. Output from the SignalP 4.0 web-server for the sequence EGFR_HUMAN. ‘C-score’ is the 
predicted cleavage site value, ‘S-score’ is the predicted signal peptide value and ‘Y-score’ is a combination 
of C- and S-scores as described in Methods. The predicted cleavage site is between position 24 and 25 with 
the local sequence context “SRA-LE.” In a summary line below the plot we show the calculated D-score, 
the associated cutoff value and which networks were used to make the prediction, in this case: “D=0.868 D-
cutoff=0.450 Networks=SignalP-noTM” 
 
 
Each network was trained for a maximum of 200 training epochs. Optimal architecture 
and training cycle were selected by the optimization set (see next subsection) according 
to the MCC (Matthews Correlation Coefficient)8, where the true and false positives and 
negatives were counted on the single position level (i.e. each single position was counted 
as a true or false positive or negative).  
 
Nested cross-validation 
When prediction methods based on machine learning algorithms are trained and tested, it 
is customary to use a cross-validation procedure, where the data set is divided into k 
partitions and for each partition a version of the method is trained on k-1 partitions, while 
one partition is left out as a test set for measuring the performance. This is adequate as 
long as the test set data are not used in any way to optimize the parameters of the method, 
but if the test set performance is used for “stopping” the network training (i.e. selecting 
the best training cycle) or for selecting the optimal network architecture, the test set 
performance is no longer an unbiased estimate of how the method will perform on new 
data, i.e. data that have not been used in its development. This may lead to an  
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SignalP-TM SignalP-noTM Euk SP CS SP CS 

Window size 41 17+1 - 20+5 41 20+3 - 20+5 
Hidden units 16 - 20 2 - 8 8 - 20 2 - 8 
Relative position  95% Always on 55% Always on 
Composition 100% Always on 95% Always on 

SignalP-TM SignalP-noTM Gram+ SP CS SP CS 
Window size 29 - 37 17+2 - 21+6 29 - 33 18+1 - 20+5 
Hidden units 8 - 20 2 - 8 18 - 20 2 - 8 
Relative position  80% Always on 60% Always on 
Composition 90% Always on 90% Always on 

SignalP-TM SignalP-noTM Gram–  SP CS SP CS 
Window size 33 - 41 16+1 - 21+6 31 - 41 17+1 - 21+6 
Hidden units 8 - 20 2 - 8 8 - 20 2 - 8 
Relative position  95% Always on 60% Always on 
Composition 100% Always on 90% Always on 
 
Table B. Parameters selected for training of the neural networks for the eukaryote (Euk), Gram-positive 
(Gram+) and Gram-negative (Gram–) datasets. The columns SP and CS show the optimal parameters for 
neural network training of signal peptide and cleavage site prediction, respectively. ‘Window size’ is the 
number of input positions used in the first layer of the neural networks for sparse encoding of the amino 
acids. For the CS networks, the input window is given as number of positions before the cleavage site plus 
number of positions after the cleavage site. ‘Hidden units’ is the number of neurons used in the second 
layer. For ‘Window size’ and ‘Hidden units’, the numbers show the range in the 20 networks trained during 
nested 5-fold cross-validation. ‘Relative position’ is central position in the sliding window, relative to the 
length of the protein sequence. ‘Composition’ is the amino acid composition of the entire sequence. For 
‘Relative position’ and ‘Composition’, the numbers show the percentage of the 20 networks that were 
selected to have the corresponding input option on. 
 
 
overestimation of performance and is a problem with many published methods, including 
our own SignalP version 3.0.9 
 
To overcome this problem, we used a nested cross-validation procedure, where the data 
were divided into homology-screened training, optimization and evaluation sets. Data 
were divided into five partitions that are all used in each of the three roles. When 
partition 1 was used as evaluation set, it was kept out of the process while a full four-fold 
cross-validation was performed on partitions 2 through 5. In each of these runs, three 
partitions were used for training the networks, while the optimization set was used for 
selecting the optimal training cycle and network architecture, and the evaluation set could 
then be used to obtain an unbiased estimate of the performance. The whole process was 
then repeated with partition 2 as evaluation set, and so on until all partitions had been 
used. This gave in total 20 versions of each network.  
 
 

Nature Methods: doi:10.1038/nmeth.1701



 SignalP-TM SignalP-noTM 
 Euk Gram+ Gram– Euk Gram+ Gram– 
Range (d) 13-20 13 12 20-24 12-15 12 
Weight (w) 0.58-0.60 0.61 0.51-0.63 0.41-0.54 0.45 0.45-0.53 
Dcut 0.50-0.51 0.45 0.51-0.53 0.36-0.51 0.44-0.57 0.56-0.59 
 
Table C. Parameters optimized on test datasets for the integration of predictions from signal peptide and 
cleavage site neural networks. ‘Range’ is the number of amino acid positions before and after a potential 
cleavage site from which the mean signal peptide likeliness is calculated. ‘Weight’ is the term used in the 
linear combination of Smean and Ymax. ‘Dcut’ is the optimized threshold for the prediction of a potential 
signal peptide. 
 
 
When measuring the performance on the evaluation set, the output values of the four 
networks in the inner loop of the nested cross-validation were arithmetically averaged to 
give a final score. This tended to give a better result than each of the networks alone 
(Table D in Supplementary Results). In the final version of SignalP 4.0 made available 
on the website, the score is an average of the output values of all twenty versions in the 
nested cross-validation. 
 
The division into training, optimization and evaluation sets is independent of the 
assignment of part of the data as comparison set. When calculating the comparison 
performances for SignalP 4.0 (Fig. 1 in the main text and Table E in Supplementary 
Results), we basically used the evaluation performances, but reduced each evaluation set 
to those sequences belonging to the comparison sets. 
 
Calculating results at sequence level 
After training, the C-score will typically be high at the cleavage site, while the S-score 
drops from a high value before the cleavage site to a low value after the cleavage site. If 
the C-score shows several peaks, the correct cleavage site can often be inferred by 
choosing the peak that occurs where the slope of the S-score is highest. This is formalized 
by the Y-score introduced in the first SignalP version, which is defined as the geometric 
average between the C-score and a smoothed derivative of the S-score: 
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The cleavage site is then predicted to be at the position where the Y-score is maximal 
(see also Fig. A). 
 
The mean S-score is calculated as the arithmetic average of the S-score from position 1 to 
the position of the maximal Y-score. The prediction of whether the entire sequence 
contains a signal peptide or not is then done by the D-score introduced in the third 
SignalP version,9 which is a weighted average of the mean S-score and the maximal Y-
score: 

( ) meanmax 1 SwwYD −+=  
A signal peptide is predicted if the D-score is larger than a cut-off value, Dcut. 
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The values of the parameters d, w and Dcut were optimized to yield the highest MCC, 
where true and false positives and negatives are calculated per sequence instead of per 
position. This optimization was done in a standard five-fold cross-validation (Table C). 
 
Methods for comparison 
In addition to the previous version of SignalP (3.0), ten methods were selected for 
comparison of predictive performances on novel data. The methods Philius,10 
MEMSAT311 and MEMSAT-SVM12 were downloaded and run locally on our computers. 
Phobius,13 Signal-BLAST,14 SPOCTOPUS15 and PrediSi16 were used directly on their 
respective websites. For the methods SPEPlip,17 Signal-CF18 and Signal-3L19 the 
situation was more complicated, since their websites only allow one sequence to be 
submitted; in these three cases, we wrote Perl scripts to automate the process of 
submitting a sequence and collecting the results. 
 
 
 
Supplementary Results 
 
As mentioned in the main text, SignalP 4.0 uses two different kinds of negative data: the 
first, corresponding to the negative data in earlier versions of SignalP, consists of 
cytosolic and, for the eukaryotes, nuclear proteins; the second consists of sequences 
without signal peptides but with one or more transmembrane helices within the first 70 
positions of the sequence. 
 
The Neural Networks have been trained on two types of input data; one method, SignalP-
noTM, has been trained with only the first negative set (i.e. cytosolic and nuclear 
sequences) while the other method, SignalP-TM, is trained with both negative sets. The 
SignalP-noTM method is similar to the previous versions of SignalP where two output 
neurons are used both for the SP (signal peptide or not) and the CS networks (cleavage 
site or not). The SignalP-TM method is different as the SP networks have three output 
states, representing signal peptide, transmembrane region, or anything else.  
 
We found that the two methods SignalP-TM and SignalP-noTM were to some extent 
complementary, i.e. SignalP-TM did not yield as good results as SignalP-noTM when 
there were no transmembrane sequences involved (Table E). Since the overall goal is to 
make one combined predictor that can be used to discriminate between signal peptide and 
transmembrane regions while still having a high performance on any kind of input 
sequence, the best generic predictor is the one that can decide which of the two methods 
should be used for any possible sequence.  
 
The solution was to use the ability of SignalP-TM to predict TM-regions, such that if a 
certain number of positions or more were predicted as part of a TM-region, then the 
SignalP-TM predictor should be used, with the SignalP-noTM predictor as the default. 
The number 4 was found to give the best performance for the combined predictor for the 
eukaryotic and Gram-negative bacterial data (this means that if SignalP-TM predicts a  
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Euk. Gram+ Gram–   
S-corr. C-corr. S-corr. C-corr. S-corr. C-corr. 

Training 0.908 0.736 0.935 0.903 0.909 0.908 
Optimization  0.872 0.654 0.825 0.631 0.857 0.793 
Evaluation 
(individual) 

0.870 0.628 0.806 0.543 0.850 0.747 

Evaluation 
(averaged) 

0.881 0.648 0.833 0.579 0.866 0.766 

 
Table D. The effects of the nested cross-validation and of averaging on the SignalP-TM networks. ‘S-corr.’ 
denotes Matthews Correlation Coefficient (MCC) for the S-score (signal peptide score in the SP networks), 
while ‘C-corr.’ denotes MCC for the C-score (cleavage site score in the CS networks). Evaluation 
performance is calculated in two different ways: for each optimization network individually or after 
averaging the scores of the four optimization networks. 
 
 
transmembrane helix that is shorter than 4 residues, SignalP-noTM is used). The final 
predictor SignalP 4.0 uses this selection scheme for these two organism groups, while for 
Gram-positive bacterial data no improvement was found after applying the selection 
scheme, so in this case the output is always that of SignalP-TM. 
 
During training, the data were divided into three parts (see Supplementary Methods for 
details regarding nested cross-validation): training (for adjusting the weights of the neural 
networks), optimization (for selecting the optimal training cycle and neural network 
architecture), and independent evaluation (for measuring the final performance). The 
performances of the SignalP-TM networks on the three parts of the data sets are shown as 
Matthews Correlation Coefficients (MCC)8 with true and false positives and negatives 
counted at single position level; the same values that were used for optimization (Table 
D). The S-correlation is a measure of how good the SP networks are at distinguishing 
positions within signal peptides from positions after the cleavage site and positions in 
negative sequences. The C-correlation is a measure of how good the CS networks are at 
distinguishing cleavage site positions from all other positions. 
 
It is evident that the performance measured on the evaluation data were not much lower 
than that measured on the optimization data (except for C-correlation for the Gram-
positive data). The difference would probably be larger if the data had not been subjected 
to the strict homology reduction as described in Supplementary Methods. 
 
The effect of averaging the output scores of the four different optimization networks 
before calculating the performance on each evaluation set is also shown (Table D). This 
gives a quite remarkable rise in performance – measured by S-correlation, the evaluation 
performance using averaging even exceeds the optimization performance. This averaging 
assumes that each network has the optimal architecture parameters for its corresponding 
optimization set.  
 
The optimal parameter settings for the neural networks are shown in Supplementary 
Methods (Table B). For most of the data sets, there was quite a large variation in the 
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optimal parameters over the twenty versions of the nested cross-validation, both in input 
window size and hidden layer size. The extra inputs (relative position in the sequence and 
amino acid composition) were selected to be included in most of the SP networks. Note, 
however, that relative position was more important for SignalP-TM than for SignalP-
noTM, indicating that this information helps in discriminating between signal peptides 
and transmembrane helices. 
 
We benchmarked SignalP 4.0 against the previous version and ten other signal peptide 
prediction methods (Fig. 1 in the main text and Table E i-iii). Performance values for the 
best prediction methods have been highlighted in bold in the table. The first column 
(signal peptide correlation for the entire data set) corresponds to the values shown in the 
figure. Benchmarking is done using the comparison datasets (Table A). For the methods 
developed in this project (SignalP-noTM, SignalP-TM and SignalP 4.0), the results are 
evaluation performances, i.e. for each version of the network they are calculated on the 
corresponding evaluation part of the comparison dataset. Signal peptide performance is 
given as the MCC,8 where true and false positives and negatives are counted at the 
sequence level (i.e. each sequence was counted as a true or false positive or negative). 
Cleavage site performance is given as two measures: sensitivity, i.e. the percentage of 
signal peptides that are predicted as a signal peptide and have the correct cleavage site 
assigned, and precision, i.e. the percentage of cleavage site predictions that are correct. In 
addition, we show the false positive rate specifically for the negative set with 
transmembrane proteins, and the signal peptide correlation for the case where no 
transmembrane proteins were included in the negative set (the situation for which 
SignalP-noTM is optimized). 
 
SignalP 4.0 is best at the prediction of signal peptides, measured by correlation 
coefficient on the entire data set, for all three organism types. However, the cleavage site 
sensitivity is not as high as that of SignalP 3.0. In general, we believe that the much lower 
level of false positives from transmembrane regions is more important than the few 
percent worse cleavage site sensitivity. However, we have chosen to give the user an 
opportunity of running SignalP-noTM instead of SignalP 4.0 by telling the server that the 
submitted sequences do not contain transmembrane regions.  
 
SignalP-noTM should be directly comparable to SignalP 3.0 NN (the neural network part 
of SignalP 3.0). For the bacterial datasets, SignalP-noTM is the best method according to 
correlation coefficient when there are no transmembrane sequences in the data, while the 
eukaryotic SignalP-noTM is slightly worse than SignalP 3.0 NN. When measured by 
cleavage site sensitivity, SignalP-noTM is better than SignalP 3.0 NN only for Gram-
positive bacteria.  
 
If the values for SignalP 3.0 are compared to those given in the SignalP 3.0 article,9 it 
must be taken into account that we have changed the way cleavage site performance is 
calculated in order to be able to benchmark SignalP against other methods. In the SignalP 
3.0 article, it was the percentage of cleavage sites predicted by the position of the 
maximal Y-score, regardless of whether the D-score was above threshold or not (see 
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i: Eukaryotic sequences 
All Sequences Only TM No TM 

Method SP corr. CS sens. (%) CS prec. (%) FP-rate (%) SP corr. 
SignalP 4.0 0.874 68.3 65.9 6.1 0.919 
SignalP-TM 0.871 66.2 68.2 3.3 0.909 
SignalP-noTM 0.674 71.3 44.2 38.1 0.960 
SignalP 3.0 NN 0.686 72.9 45.1 39.5 0.968 
SignalP 3.0 HMM 0.762 72.1 51.8 23.2 0.932 
PrediSi 0.561 66.0 37.6 52.6 0.909 
SPEPlip 0.717 66.5 46.4 30.7 0.953 
Signal-CF* 0.475 62.3 28.0 74.8 0.878 
Signal-3L* 0.432 53.3 24.5 73.7 0.821 
SignalBlast SP1 0.690 29.4 19.1 27.3 0.851 
SignalBlast SP2 0.739 30.0 24.3 16.0 0.843 
SignalBlast SP3 0.736 24.6 26.5 7.2 0.774 
SignalBlast SP4 0.546 29.5 14.7 51.3 0.794 
Phobius 0.811 62.4 50.8 15.3 0.931 
Philius 0.800 65.8 54.3 14.0 0.902 
MEMSAT3 0.252 0.2 0.2 26.7 0.468 
MEMSAT-SVM 0.381 0.8 1.0 16.6 0.488 
SPOCTOPUS 0.776 34.7 30.2 13.8 0.880 
 
ii: Gram-positive bacterial sequences 

All Sequences Only TM No TM 
Method SP corr. CS sens. (%) CS prec. (%) FP-rate (%) SP corr. 
SignalP 4.0 0.851 72.9 83.3 2.6 0.894 
SignalP-TM 0.851 72.9 83.3 2.6 0.894 
SignalP-noTM 0.556 77.1 36.3 47.9 0.948 
SignalP 3.0 NN 0.618 72.9 41.7 35.0 0.934 
SignalP 3.0 HMM 0.558 77.1 38.1 43.5 0.895 
PrediSi 0.607 60.4 38.7 28.2 0.880 
SPEPlip 0.488 60.4 28.7 50.4 0.866 
Signal-CF* 0.415 78.3 23.4 29.8 0.814 
Signal-3L* 0.420 34.8 10.5 84.6 0.799 
SignalBlast SP1 0.575 22.9 11.8 33.3 0.804 
SignalBlast SP2 0.684 22.9 15.9 19.7 0.868 
SignalBlast SP3 0.711 22.9 16.9 17.1 0.881 
SignalBlast SP4 0.419 22.9 7.3 62.4 0.659 
Phobius 0.704 60.4 43.9 18.8 0.894 
Philius 0.726 52.1 41.7 12.8 0.854 
MEMSAT3 0.101 0.0 0.0 10.3 0.261 
MEMSAT-SVM 0.675 0.0 0.0 11.1 0.812 
SPOCTOPUS 0.625 35.4 34.0 14.5 0.807 
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iii: Gram-negative bacterial sequences 
All Sequences Only TM No TM 

Method SP corr. CS sens. (%) CS prec. (%) FP-rate (%) SP corr. 
SignalP 4.0 0.848 65.4 70.8 1.5 0.882 
SignalP-TM 0.815 61.5 75.3 1.1 0.839 
SignalP-noTM 0.497 71.2 26.1 35.8 0.948 
SignalP 3.0 NN 0.542 74.0 30.8 28.5 0.925 
SignalP 3.0 HMM 0.477 76.9 26.1 39.2 0.931 
PrediSi 0.479 75.0 27.2 35.6 0.901 
SPEPlip 0.429 70.2 21.4 45.1 0.891 
Signal-CF* 0.288 73.1 13.8 78.1 0.698 
Signal-3L* 0.287 73.1 13.5 81.1 0.714 
SignalBlast SP1 0.530 39.4 14.6 25.4 0.767 
SignalBlast SP2 0.252 18.3 3.2 72.8 0.543 
SignalBlast SP3 0.642 34.6 22.8 11.5 0.836 
SignalBlast SP4 0.387 39.4 9.4 46.1 0.635 
Phobius 0.586 73.1 33.6 23.3 0.920 
Philius 0.639 76.9 26.1 15.7 0.872 
MEMSAT3 0.084 0.0 0.0 17.8 0.312 
MEMSAT-SVM 0.497 1.0 0.6 16.4 0.780 
SPOCTOPUS 0.510 33.7 18.6 20.5 0.848 
 
Table E. Benchmarking of signal peptide and cleavage site predictions on the comparison dataset for all 
three organism groups. ‘SP corr.’ denotes signal peptide correlation, while ‘CS sens.’ denotes cleavage site 
sensitivity (the percentage of actual cleavage sites that are predicted correctly) and ‘CS prec.’ denotes 
cleavage site precision (the percentage of predicted cleavage sites that are correct). ‘FP-rate’ (false positive 
rate) is the percentage of transmembrane sequences that are incorrectly predicted as a signal peptide. ‘No 
TM’ denotes the test where there were no transmembrane sequences in the data, i.e. only the first negative 
set was used. Note that performance for SignalP 4.0 and SignalP-TM are identical for Gram-positive 
bacterial sequences, since SignalP 4.0 does not use the combination scheme for this organism group. The 
methods indicated with a star (*) can only make predictions for sequences longer than 50 aa. For those 
methods the evaluation sets were reduced by 4, 2, and 22 sequences for the Eukaryote, Gram-positive and 
Gram-negative sets, respectively. 
 
 
 
Supplementary Methods for definitions). In other words, a cleavage site could be scored 
as correct even though the sequence was not predicted to be a signal peptide. This 
necessarily gives a higher number than the cleavage site sensitivity (Table E). In 
addition, our use of the nested cross-validation (Supplementary Methods) results in a 
slightly more conservative performance estimation than the plain cross-validation used in 
the SignalP 3.0 article. 
 
The other methods that were designed to discriminate between signal peptides and 
transmembrane sequences (Philius, Phobius and SPOCTOPUS) have also high 
correlation coefficients for eukaryotic data, while they are somewhat worse for the 
bacterial sequences. This may be due to the fact that these three methods did not divide 

Nature Methods: doi:10.1038/nmeth.1701



  11

their training data into different organism groups but pooled them all together, resulting 
in methods that are optimized for the most abundant organism group in the data, the 
eukaryotes. The cleavage site performance is rather high for Phobius and Philius, 
especially regarding cleavage site sensitivity on the Gram-negative bacterial sequences, 
where Philius shares the winning position with SignalP 3.0 HMM (the Hidden Markov 
Model part of SignalP 3.0), while SPOCTOPUS is not as good at locating cleavage sites 
correctly. The number of false-positive signal peptide predictions from transmembrane 
sequences is lower for these methods than for most of the dedicated signal peptide 
predictors, but still much higher than for SignalP 4.0. 
 
MEMSAT3 and MEMSAT-SVM do surprisingly bad, especially regarding cleavage sites 
where they are almost always wrong. In all fairness, it should be said that the authors of 
these two methods never promoted them as signal peptide prediction tools. However, 
since they do provide predictions of signal peptides in their output, users may be led into 
believing that these predictions are useful, which our analysis indicates that they are not.  
 
Signal-CF and Signal-3L have fairly high cleavage site sensitivities (except for Signal-3L 
for Gram-positive bacteria, where Signal-CF is the winner), but this should be seen in 
context of their low cleavage site precisions and very high false positive rates on 
transmembrane regions. On eukaryotic data, these two methods predict a signal peptide 
for almost 75% of the transmembrane helices. Signal-3L had a peculiar problem with its 
cleavage site assignment, since it in some cases produced an output stating that there was 
a signal peptide from position 1 to –1. In these cases, we scored it as a positive prediction 
with wrong cleavage site. This happened 18 times in the eukaryotic set and 22 times in 
the Gram-negative set. 
 
Signal-BLAST differs from all the other methods, since it uses alignments to known 
signal peptides for prediction instead of machine learning or statistical methods. Signal-
BLAST can be run in four modes optimized for different situations, and we have tested 
all four. The best mode according to signal peptide correlation is SP3 (optimized for 
accuracy and specificity) which almost matches Phobius and Philius in correlation 
coefficient and has very few false positives. However, the cleavage site performance of 
all Signal-BLAST versions is rather low. This is an interesting observation, since it 
suggests that cleavage sites are much less conserved in evolution than signal peptides are. 
 
In contrast to earlier versions of SignalP, we have measured the performance of SignalP 
4.0 using nested cross-validation (see Supplementary Methods for details), which 
ensures total separation between the data used for optimizing the neural networks and 
data used for testing the performance. However, we have shown that the overestimation 
of performance due to early stopping and architecture selection is not large. On the other 
hand, our use of the nested cross-validation procedure has shown that averaging over 
several networks is very efficient for improving performance.  
 
As described in the main text, the data were divided into eukaryotic, Gram-positive 
bacterial, and Gram-negative bacterial sets. Since some differences are also known to 
occur between mammalian and yeast signal peptides,20 we tested a further subdivision of 
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the eukaryotic data into animals, fungi, and plants, and trained separate methods for these 
three groups. However, this did not give any improvement, and performance for all three 
groups was better when using the method trained on all eukaryotic sequences (results not 
shown). 
 
When comparing the SignalP-noTM part of SignalP 4.0 with SignalP 3.0 NN, one would 
expect to see an improvement in performance, since the data set has grown. This is not 
the case for the eukaryotic data, where both the cleavage site performances and the 
correlation coefficients are slightly worse. One reason for this might be that we did not 
discard sequences with rare amino acids at the –1 position relative to the cleavage site, as 
was done in the data set of SignalP 3.0. Our reasoning was that since all signal peptides 
are annotated as experimentally verified, the method should be able to recognize even 
those with atypical cleavage sites; but maybe these outliers actually disturb the training 
and make the method perform slightly worse. This should be thoroughly tested in the 
next SignalP version.  
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