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We describe improvements of the currently most popular method for predic-
tion of classically secreted proteins, SignalP. SignalP consists of two different
predictors based on neural network and hidden Markov model algorithms,
where both components have been updated. Motivated by the idea that the
cleavage site position and the amino acid composition of the signal peptide are
correlated, new features have been included as input to the neural network.
This addition, combined with a thorough error-correction of a new data set,
have improved the performance of the predictor significantly over SignalP ver-
sion 2. In version 3, correctness of the cleavage site predictions have increased
notably for all three organism groups, eukaryotes, Gram-negative and Gram-
positive bacteria. The accuracy of cleavage site prediction has increased in
the range from 6-17% over the previous version, whereas the signal peptide
discrimination improvement is mainly due to the elimination of false positive
predictions, as well as the introduction of a new discrimination score for the
neural network. The new method has also been benchmarked against other
available methods. Predictions can be made at the publicly available web
server http://www.cbs.dtu.dk/services/SignalP/.
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Introduction

Numerous attempts to predict the correct subcellular location of proteins using machine
learning techniques have been developed1–9. Computational methods for prediction of
N-terminal signal peptides were published around 20 years ago, initially using a weight
matrix approach1,2. Development of prediction methods shifted to machine learning al-
gorithms in the mid 1990’s10,11, with a significant increase in performance12. SignalP, one
of the currently most used methods, predicts the presence of signal peptidase I cleavage
sites. For signal peptidase II cleavage sites found in lipo-proteins the LipoP predictor has
been constructed13. SignalP produces both classification and cleavage site assignment,
while most of the other methods classifies proteins as secretory or non-secretory.

A consistent assessment of the predictive performance requires a reliable benchmark
data set. This is particularly important in this area where the predictive performance is
approaching the performance calculated from interpretation of experimental data, which
is not always perfect. Incorrect annotation of signal peptide cleavage sites in the databases
stems not only from trivial database errors, but also from peptide sequencing where it
may be hard to control the level of post-processing of the protein by other peptidases,
after the signal peptidase I has made its initial cleavage. Such post-processing typically
leads to cleavage site assignments shifted downstream relative to the true signal peptidase
I cleavage site.

In the process of training the new version of SignalP we have generated a new, thor-
oughly curated data set based on the extraction and redundancy reduction method pub-
lished earlier14. Other methods were used for cleaning the new data set, and we found a
surprisingly high error rate in Swiss-Prot, where, for example, in the order of 7% of the
Gram-positive entries had either wrong cleavage site position and/or wrong annotation
of the experimental evidence. Also, we found many errors in a previously used bench-
mark set12 (stemming from automatic extraction from Swiss-Prot), and it appears that
some programs are in fact better than the performance reported (predictions are correct,
while feature annotation is incorrect). For comparison, we made use of this independent
benchmark data set that was initially used for evaluation of five different signal peptide
predictors12.

In the new version of SignalP we have introduced novel amino acid composition units
as well as sequence position units in the neural network input layer in order to obtain
better performance. Moreover, we have slightly changed the window sizes compared to
the previous version. We have used fivefold cross-validation tests for direct comparison
to the previous version of SignalP10. In the previous version of SignalP a combination
score, Y , was created from the cleavage site score, C, and the signal peptide score, S, and
used to obtain a better prediction of the position of the cleavage site. In the new version,
we also use the C-score to obtain a better discrimination between secreted and non-
secreted sequences, and have constructed a new D-score for this classification task. The
architecture of the hidden Markov model SignalP has not changed, but the models have
been retrained on the new data set, and have also significantly increased their performance.
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Results and discussion

Generation of data sets

As the predictive performance of the earlier SignalP method was quite high, assessment of
potential improvements is critically dependent on the quality of the data annotation. We
generated a new positive signal peptide data set from Swiss-Prot15 release 40.0, retaining
the negative data set extracted from the previous work. The method for redundancy
reduction was the same as in the previous work14, and was based on the reduction prin-
ciple developed by Hobohm et al.16. Our final positive signal peptide data sets contain
1192, 334 and 153 sequences for eukaryotes, Gram-negative and Gram-positive bacteria,
respectively.

In the previous work, we found many errors by detailed inspection of hard-to-learn
examples during training and wrongly predicted examples. Nevertheless, we were quite
sure that even after careful examination in this manner, the data set would probably
still contain errors obtained from incorrect database annotation and wrongly interpreted
laboratory results.

Therefore, we developed a new feature based approach where abnormal examples
can be detected by inspecting rare amino acid occurrences and outlier physical-chemical
properties of signal peptides. In the following, we show that the isoelectric point of signal
peptides can help in finding possible annotation errors and other errors, where these errors
may be due to the fact that some (long) signal peptides annotated in Swiss-Prot actually
include probable propeptides. In such cases, convertase cleavage sites are mixed together
with signal peptidase I cleavage sites.

Removal of spurious cleavage site residues

Experimental assessment of the effect of certain amino acids in the cleavage site region has
shown that rare residues do not allow for efficient cleavage17,18. Examination of amino
acids around the signal peptidase I cleavage site in the data set revealed a number of
sequences containing amino acids, which very rarely appear at the cleavage site.

In the eukaryotic data set we found and removed seven sequences containing lysines
(K) and 13 sequences containing arginines (R) at the −1 position. All sequences with
either a lysine or an arginine at position −1 were investigated manually. All of them
except one had a predicted cleavage site upstream of the annotated one. Most of these
sequences probably undergo N-terminal maturation by different proteases, either in the
Trans Golgi Network (TGN) or after release from the cell as mentioned below in the
section on propeptide analysis. In one clear case we found an obvious error in the Swiss-
Prot entry NPAB LOCMI. According to the annotation the cleavage site is located between
residues 24-25 (arginine in position −1), but in the original paper the authors identified
the cleavage to occur between amino acids 22-23. In this case, the two amino acids, ER,
are removed by a dipeptidase19.

Furthermore, we removed sequences where other amino acids appeared at position −1
in very few of the sequences. For the eukaryotic data set, the only allowed residues at
position −1 were alanine (A), cysteine (C), glycine (G), leucine (L), proline (P), glutamine
(Q), serine (S) and threonine (T). By allowing only the latter amino acids we might have
removed a few true, unusual sequences. For instance, tyrosine (Y) and histidine (H)
at position −1 were found only in one case each in the entire eukaryotic data set. We
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removed eight sequences with aspartic acid (D) and eight with phenylalanine (F), seven
each with glutamic acid (E) and asparagine (N), respectively. Five with methionine (M),
three containing isoleucine (I) and two sequences containing tryptophan (W) at position
−1 were also removed. Some of these are in fact provable errors, in one of the aspartic
acid examples, CLUS BOVIN20, the N-terminal peptide sequencing in the paper reports the
cleavage as MKTLLLLMGLLLSWESGWA---ISDKELQEMST · · ·, while Swiss-Prot annotates the
sequence as being cleaved between D and K, thereby changing a common position −1
amino acid, alanine, into a rare one. Interestingly, SignalP predicts the cleavage site as
reported in the paper.

For Gram-positive and Gram-negative bacteria, only four residues were allowed at
position −1. These residues were alanine (A), glycine (G), serine (S) and threonine
(T)17,18. For the Gram-positive data set, this approach removed four sequences containing
arginines (R), three containing valines (V), two containing lysines (K) and one sequence
each of glutamic acid (E), leucine (L), asparagine (N), glutamine (Q), threonine (T) and
tyrosine (Y). In the Gram-negative data set, we removed two sequences containing valine
(V) at position −1 and one sequence for each of the following amino acids, glutamic acid
(E), lysine (K), leucine (L), asparagine (N), glutamine (Q).

Isoelectric point calculations

Previous studies have shown differences in amino acid composition between signal peptide
and mature protein21,22. Thus, we examined to what extent the isoelectric point (pI) could
be used as a unique feature of signal peptides.

We calculated the pI for all signal peptides and the corresponding mature proteins
in the data set and presented this in three scatter plots (Figure 1). In the scatter plot
for Gram-positive bacteria two very distinct clusters appear. Only three signal peptide
outliers were found and by manual inspection of the corresponding Swiss-Prot entries, we
found that these proteins most likely were either not carrying signal peptides, or were
annotated wrongly.

These outliers having pI values below 8 had the following Swiss-Prot ID’s CWLA BACSP,
IAA2 STRGS, COTT BACSU. The three entries have annotated signal peptides, but it is
doubtful whether the annotation is correct. According to the prediction from SignalP
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Figure 1: Isoelectric point calculations. Calculations of isoelectric point of signal peptide and mature
protein, indicated by s and m, respectively. Clusters of outlier examples for bacteria are indicated on the
two plots.
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and PSORT, CWLA BACSP does not carry a signal peptide. CWLA BACSP was in the paper
described as a “putative” signal peptide23 and later it was indicated that cwlA is part
of an ancestral prophage, still remnant in the Bacillus subtilis genome24. All phage and
virus sequences were initially removed from the SignalP training set, which could result
in the negative prediction for this prophage sequence.

The cleavage site in the alpha-amylase inhibitor IAA2 STRGS turns out not to be ex-
perimentally verified. It is predicted to have a cleavage site at position 26 (SignalP) or
24 (PSORT). Calculation of pI using the SignalP predicted signal peptide length gave a
new result of 8.66, closer to the average for Gram-positive bacteria. The paper proposes
two other cleavage site positions, but none of these have been verified experimentally25.

The last entry COTT BACSU is a spore coat protein from B. subtilis26,27 and no BLAST
homologs in Swiss-Prot were found to contain an experimentally verified signal peptide.
CotT is proteolytically processed from a 10kD precursor protein and is localized to spore
coat where it controls the assembly. By N-terminal sequencing the N-terminus of the
mature and processed protein was identified, although nowhere in the two papers is an
SPase I cleavage site indicated, thus no signal peptide is mentioned26,27. With the current
knowledge about spore coats, spore coat assembly does not involve translocation of coat
protein across any membrane28–30. Hence, it is very unlikely for CotT to carry an N-
terminal signal peptide as annotated in Swiss-Prot.

The average isoelectric point of signal peptides and mature proteins in the entire
Gram-positive data set was 10.59 and 6.24, respectively. This is consistent with the fact
that Gram-positive bacteria are known to have the longest signal peptides that carry more
basic residues (K/R) in the n-region, than Gram-negatives and eukaryotes11.

When inspecting the scatter plot for Gram-negative bacteria, we find the same overall
clustering as observed for the Gram-positive bacteria, although not as distinct. Here the
major group of signal peptides have pIs between 8 and 13, although the variation is larger
than in the Gram-positive scatter plot. A few sequence entries with acidic signal peptides
were investigated in detail. Sequence entry SFMA ECOLI having a pI of 4.78 was found to
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Figure 2: Alternative start codon assignment. The graphical output from SignalP strongly indicates
erroneous annotation of the signal peptide from Swiss-Prot entry SFMA ECOLI. Further investigation
showed a wrong annotation of the start codon (see text for details). C, S, and Y-score indicate cleavage
site, “signal peptide-ness” and combined cleavage site predictions, respectively.
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be an obvious erroneous annotation in Swiss-Prot. This entry had an annotated cleavage
site at position 22, but a predicted cleavage site at position 34. As seen from Figure 2 we
found an internal methionine at position 12. Since the signal peptide-ness is very low until
position 12 we assumed that this was an incorrectly annotated start codon. If the initial
11 amino acids until the internal methionine were removed, SignalP correctly predicted
the cleavage to be at position 22 and the pI of the signal peptide increased from 4.78 to
9.99. Indeed, in release 41.0 of Swiss-Prot this entry was corrected and the signal peptide
marked “POTENTIAL”.

For eukaryotes on the other hand, we were not able to distinguish the pI of the signal
peptide and the mature protein. Eukaryotes have the shortest signal peptides and the
amount of basic residues is much lower than for bacteria.

Propeptide or signal peptide?

For the eukaryotic data we examined whether annotated signal peptides could possi-
bly include propeptides. In secreted proteins, propeptides are often found immediately
downstream of the signal peptidase I cleavage site and their cleavage site is defined by
a conserved set of basic amino acids. Propeptides can be hard to detect by N-terminal
Edmann degradation, as the propeptides are cleaved off in the TGN before the release of
the mature protein to the surroundings31.

We used a new propeptide predictor, ProP, to predict propeptide cleavage sites32 in the
eukaryotic data set. In ten sequences we found a predicted cleavage site for a propeptide
at the same position where a signal peptidase I cleavage site was annotated in Swiss-Prot.
In all ten cases SignalP predicted a shorter signal peptide than annotated, thus making
room for a short propeptide between the predicted signal peptide and the mature pro-
tein. The ten sequences, AMYH SACFI, CRYP CRYPA, FINC RAT, GUX2 TRIRE, LIGC TRAVE,
MDLA PENCA, RNMG ASPRE, RNT1 ASPOR, XYN2 TRIRE, XYNA THELA, were reassigned accord-
ing to the prediction of SignalP version 2.0. This is an exceptional case where we tend
to rate the computational analysis higher than experimental evidence, which must be
considered weak, as the propeptide processing takes place before the proteins have been
subjected to experimental, N-terminal peptide sequencing.

After the signal peptide in these cases had been reassigned, we got marginally higher
correlation coefficients when retraining the neural network on the reassigned data set
(data not shown).

Optimization of window sizes

As in the earlier SignalP approach, the signal peptide discrimination and the signal
peptidase I cleavage site prediction were handled using two different types of neural
networks10,33.

We used a brute force approach to optimize the window sizes for the neural net-
works by calculating single position correlation coefficients for all possible combinations
of symmetric and asymmetric windows. Using this approach we trained approximately
6500 neural networks for window optimization for a single organism group. This was
furthermore done for different combinations where amino acid composition and position
information was included in the input to network or not, leading to approximately 27000
neural networks being tested in all.
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For eukaryotes, these data are shown in Figure 3. It is clear that optimal signal peptide
discrimination prediction requires symmetric (or nearly symmetric) windows, whereas
cleavage site training needs asymmetric windows with more positions upstream of the
cleavage site included in the input to the network. The optimal window size for cleavage
site prediction for the eukaryote network included 20 positions upstream and 4 positions
downstream of the cleavage site. The window sizes for the Gram-positive networks were
retained as previously found10, whereas the Gram-negative cleavage site network included
one more position downstream of the cleavage site, resulting in a window of 11 positions
upstream and 3 positions downstream of the cleavage site. The eukaryote discrimination
network performs best when using a symmetric window of 27 positions. For both Gram-
positive and Gram-negative bacteria the discrimination network is based on a symmetric
window of 19 positions. This brute force approach changed the optimal window sizes of
the cleavage site network slightly from those used in SignalP 2.010,33.

Network performance

We have evaluated the performance of SignalP version 3.0 using the same performance
measures as used for the previous two versions of SignalP, see Table 1. The performance
values were calculated using five fold cross-validation, i.e. testing on sequences not present
in the training set (all data split into five subsets of approximately the same size). The
most significant performance increase was obtained for the cleavage site prediction as seen
in Table 1. A performance increase of 6-17% for all three organism classes was obtained.
We were able to optimize the signal peptide discrimination performance by introducing
a new score, termed the D-score, replacing the earlier used mean S-score quantifying the
“signal peptide-ness” of a given sequence segment. In the earlier versions of SignalP the
scores from the two types of networks were combined for cleavage site assignment, and
not for the task of discrimination. In the new version 3, the D-score is calculated as the
average of the mean S-score and the maximal Y-score, and the two types of networks are
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Figure 3: Window optimization. These plots show single position level correlation coefficients for all
combinations of window sizes for the signal peptide cleavage and discrimination networks used for eu-
karyotic signal peptide prediction. The optimal window size for cleavage site for the eukaryotic network
included 20 positions to the left and 4 positions to the right of the cleavage site. For reasons of computa-
tional efficiency we have selected a discrimination network with a symmetric window of 27 amino acids,
although networks with larger windows have slightly higher single position level correlation coefficients.
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then used for both purposes (see Material and Methods for details).

Version Cleavage site (Y-score) Discrimination (SP/non-SP)
Euk Gram− Gram+ Euk Gram− Gram+

SignalP 1 NN 70.2 79.3 67.9 0.97 0.88 0.96
SignalP 2 NN 72.4 83.4 67.4 0.97 0.90 0.96
SignalP 2 HMM 69.5 81.4 64.5 0.94 0.93 0.96
SignalP 3 NN 79.0 92.5 85.0 0.98 0.95 0.98
SignalP 3 HMM 75.7 90.2 81.6 0.94 0.94 0.98

Table 1: Performances of three different SignalP versions. The most significant improvement was
for the cleavage site predictions. Cleavage site performances are presented as % and discrimination values
(based on D-score) as correlation coefficients. NN and HMM indicate neural network and hidden Markov
model, respectively. Results are based on five-fold cross validation for all SignalP versions
.

Improvement by position information and composition features

In order to improve the performance of the neural network version of SignalP, we intro-
duced two new features into the network input: information about the position of the
sliding window as well as information on the amino acid composition of the entire se-
quence. This information was encoded by additional input units in the neural network.
The new position information units were found to be important for both the cleavage
site and discrimination networks, whereas the amino acid composition information only
improved the discrimination network. The idea of including compositional information
is based on the observation that the composition of secreted and non-secreted proteins
differ21,22.

The average length of signal peptides range from 22 (eukaryotes) and 24 (Gram-
negatives) to 32 amino acids for Gram-positives, and the new network encoding the po-
sition of the sliding window uses these averages to penalize prediction of extremely long
or short signal peptides. Therefore, twin arginine signal peptides often receive a below
threshold D-score as they tend to be quite long (average 37 amino acids)34,35. This also
means that a few cases of ordinary signal peptides with extreme length are not predicted
correctly by the neural networks. The HMM is also in its structure penalizing long signal
peptides, and similarly the SignalP3 HMM is not able to predict these cases correctly.
One example36 is the (NUC STAAU) with a 63 amino acid long signal peptide that is not pre-
dicted correctly by any of the SignalP3 models. SignalP3 does not always fail to predict
long signal peptides correctly, e.g. the 56 amino acids long signal peptide of CYGD BOVIN37

is handled correctly by the neural network version, both in terms of cleavage site and dis-
crimination. However, great care should be taken when interpreting the scores for long
potential signal peptides.

From Figure 4 the importance of the new approach where position and amino acid
composition information is included can be assessed. Including information of the position
of the sliding window during training, increased the neural network cleavage site prediction
performance slightly (left panel of the figure). Composition information did not increase
the performance of the cleavage site prediction, therefore it is excluded from the left
panel in Figure 4. But composition information did increase the performance of the
discrimination network slightly (right panel of the figure), whereas information of the
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Figure 4: Improvement of the neural network by introducing length and composition fea-
tures. Position of the sliding window in the neural network input increased cleavage site prediction
performance slightly (left panel). Amino acid composition information together with information of the
position of the sliding window improved the discrimination network significantly as seen in the right
panel. The performance improvement was evaluated as single position level correlations during training
on the individual networks for cleavage and discrimination, respectively.

position of the sliding window together with composition increased the discrimination
significantly (right panel). Another improvement of the discrimination stems from the new
D-score (see Table 2). The final prediction method uses both position and composition
information.

Effect of the new discrimination score

In SignalP version 3.0 we have introduced a new discrimination score for the neural
network, termed the D-score. Based on the mean S-score and maximal Y-score it was
found to give increased discriminative performance over the mean S-score, used in SignalP
version 2.0. In Table 2, the D-score shows superior performance over the mean S-score
for the novel part of the benchmark set defined by Menne et al. (see below).

Dataset sensitivity specificity accuracy cc
Eukaryotes 0.99 (0.98) 0.85 (0.84) 0.93 (0.93) 0.87 (0.86)
Gram− 0.94 (0.93) 0.88 (0.81) 0.95 (0.93) 0.88 (0.82)
Gram+ 0.98 (0.98) 0.98 (0.98) 0.98 (0.98) 0.96 (0.95)

Table 2: D-score outperforms the mean S-score for discrimination of signal peptide versus
non-signal peptide. Using the novel part of the Menne test set12, we tested the D-score for discrimi-
nation compared to the mean S-score. The mean S-score performances are shown in parentheses.

The above mentioned 56 amino acid long signal peptide in CYGD BOVIN is an example
where the D-score leads to a correct classification, while the mean S-score is below the
threshold. In this case the strong cleavage site score adds to a weaker signal peptide-ness
in the C-terminal part of the leader sequence.

Performance comparison to other prediction methods

As described in a recent review of signal peptide prediction methods it is hard to find an
ideal benchmark set, as methods have been frozen at different times12. The data used
to train a method is in general “easier” than genuine test sequences that are novel to
a particular method. Since we have used a more recent version of Swiss-Prot than did
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Menne et al. in their assessment, we have merely retained Menne set sequences that
are not present in the SignalP version 3.0 training set. In this manner, we do not give
an advantage to SignalP, as some of these sequences possibly have been included in the
training set for other methods.

We did not test the performance of the weight matrix-based methods SigCleave or
SPScan as the earlier report shows that these are outperformed by machine learning
methods12. SigCleave is based on von Heijne’s weight matrix2 from 1986. SPScan is also
based on the weight matrix from von Heijne, but in addition to this it uses McGeoch’s
criteria for a minimal, acceptable signal peptide1.

We have tested other methods which are made available, one problem being that they
do not necessarily predict the same organism classes, e.g. the PSORT-B method8 does
only predict on Gram-negative data, and not on the two other SignalP organism classes.

The comparative results are given in Table 3. For the PSORT-II method38,39 which
predicts on eukaryotic sequences, the subcellular localization classes “endoplasmic retic-
ulum (ER)”, “extracellular” and “Golgi” were merged into one category of secretory
proteins, whereas the rest “cytoplasmic”, “mitochondrial”, “nuclear”, ‘peroxisomal” and
“vacuolar” were merged into a single “non-secretory” category. The performance reported
in the paper is 57% correct for all categories. In Table 3 it can be seen that SignalP3
outperforms PSORT-II on this particular set with a significant margin. PSORT-II does
not assign cleavage sites, and we have therefore only compared the discrimination perfor-
mance. We believe that the minor decrease in discrimination performance of SignalP3 on
this set, when compared to the cross-validation performance reported above in Table 1, is
a result of errors in the Menne set (originating from Swiss-Prot) together with its redun-
dancy (see below), but more importantly, the presence of transmembrane helices within
the first 60 amino acids in more than 10% of the novel negative test sequences from this
set (when analyzed by TMHMM40).

The new version of PSORT (PSORT-B) has been trained on five subcellular localiza-
tion classes in Gram-negative bacteria and was reported to obtain a 97% specificity and
75% sensitivity8. PSORT-B was optimized for specificity over sensitivity. Another recent
method, SubLoc5 predicts three subcellular compartments for prokaryotes and four com-

Data set / Method sensitivity specificity accuracy cc
Eukaryotes SignalP3-NN 0.99 0.85 0.93 0.87
Eukaryotes PSORT-II 0.65 0.75 0.80 0.56
Eukaryotes SubLoc 0.58 0.70 0.77 0.47
Gram− SignalP3-NN 0.92 0.88 0.95 0.87
Gram− PSORT-B 0.99 0.64 0.75 0.58
Gram− Subloc 0.90 0.79 0.91 0.78
Gram+ SignalP3-NN 0.95 0.93 0.97 0.92
Gram+ PSORT 0.86 0.80 0.91 0.77
Gram+ SubLoc 0.82 0.92 0.86 0.76

Table 3: Performance measures for signal peptide discrimination. Using the novel part of the
Menne et al. test set12 we obtained the results shown in the table. Note that the values for PSORT-B
is calculated on the part of the data set where PSORT-B produces a classification. Around 55% of
the sequences were classified as “Unknown”, and the actual performance is therefore much lower than
indicated here. For a given organism class the relevant version of PSORT has been used to make the
predictions and calculated the performance.
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partments for eukaryotes. For SubLoc the total prediction accuracy was reported to be
91.4% for the three subcellular locations in prokaryotes and 79.4% for the four locations in
eukaryotes. None of the latter two methods, PSORT-B and SubLoc, reports a predicted
cleavage site, but is only designed to perform discrimination. Also, none of these methods
were compared to the SignalP version 2.0 in their publications.

Of the 289 negative test set sequences for Gram-negative bacteria in the novel part of
the Menne set, 191 received an “Unknown” classification by PSORT-B, and similarly 22
sequences in the positive test set were classified as unknown. The “Unknown” sequences
were discarded in the calculation of the PSORT-B performance shown in Table 3. PSORT-
B classifies 55% of the submitted sequences as “Unknown”. From Table 3 it can be seen
that SignalP3-NN is significantly better than both SubLoc and PSORT-B on the novel
part of the Menne set, even when excluding these “unknown” sequences. SignalP3-HMM
has a similar performance on this set. All PSORT-B categories except cytoplasmic were
regarded as secretory. In comparison to SignalP3 we have merged the two categories
“periplasmic” and “extracellular” predicted from SubLoc to one category for secretory
proteins.

The original version of PSORT was used for predicting signal peptides in Gram-positive
bacteria3. We merged the output categories of “cleaved signal peptide” and “uncleaved
signal peptide” into one category, “secretory”. Sequences with a negative N-terminal sig-
nal peptide prediction were regarded as cytoplasmic. Again, the performance of SignalP3
is higher than PSORT. As the amount of data used to train this version of PSORT was
quite small, the performance is surprisingly good.

Sigfind41, another (eukaryotic only) method based on neural networks, has a limitation
of four sequences per host per day. We have submitted 50 randomly chosen negative and
50 randomly chosen positive test sequences from the novel Menne set. Sigfind reported
two false positive within this negative test set and 1 false negative in the positive test set.
When running the same sequences on SignalP3, we obtained no false positives, but the
same false negative as Sigfind.

Manual inspection of the one false negative prediction of APL HUMAN by both Sigfind
and SignalP revealed that this particular Swiss-Prot has been updated (with new identifier
APL1 HUMAN) after the development of the Menne set, which was based on release 38.0 of
Swiss-Prot. The sequence has now been extended by 15 amino acids at the N-terminus
which results in a 27 amino acid long signal peptide and not a 12 amino acid signal peptide
as earlier reported. Taken this change into consideration, both Sigfind and SignalP3
correctly classifies this protein as being secreted.

For this limited part of the novel test set by Menne, Sigfind obtained a correlation
coefficient of 0.96, compared to the perfect correlation coefficient of 1.0 for SignalP3.

Wondering about the true performance of Sigfind, we chose to submit eukaryotic
secretory, cytoplasmic and nuclear protein sequences initially created in Swiss-Prot release
42.0. Neither SignalP or the Sigfind method have been trained or tested on these new
sequences. We were able to extract 54 signal peptide containing sequences, 86 cytoplasmic,
and 119 nuclear sequences. When submitting those Sigfind correctly classifies all new
signal peptide containing sequences as secretory, but classifies four of the 86 cytoplasmic
and five of the nuclear sequences as secretory (false positives). SignalP3 correctly classifies
all new eukaryotic secretory and cytoplasmic proteins correctly, but make two false positive
predictions for the nuclear sequences. For discrimination of secretory and non-secretory
proteins newly entered into Swiss-Prot, the Sigfind method obtains a correlation coefficient
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of 0.91, whereas SignalP again obtains a better correlation of 0.98. It appears that the
Sigfind method quite strongly overpredicts signal peptide containing sequences, and this
means that on a normal data set (either the one used to train SignalP or a full proteome),
where the non-secretory proteins greatly outnumber the secretory proteins, the actual
performance in terms of specificity will be much lower than on this more balanced set.

A neural network based method (NNPSL) for prediction of subcellular localization in
eukaryotes and prokaryotes were published a few years back4. Unfortunately, the online
prediction method is capable of handling only a couple of sequences per submission, which
made it hard to compare to SignalP.

Another prediction method SPEPlip7 was recently published, but we were not able to
perform a comparison as the server did not function for a duration of four weeks in which
we checked it. However, we are quite sceptical in relation to the generalization ability
of this method, as it was trained and tested on the full version of the highly redundant
Menne set. The set has not been redundancy reduced before training and testing of
SPEPlip7. Consequently, the test part of the data set will contain many sequences highly
similar to training set sequences. For such sequences with high similarity, the cleavage
site position can easily be found by alignment, and the inclusion of such sequences leads
to a significant overestimation of the predictive performance.

A recently published method for cleavage site prediction (not available for test) based
on support vector machines6 reports a performance increase of 47% in terms of true
positive predictions at a false positive rate of 3% when compared to the original weight
matrix method by von Heijne2. Unfortunately, the support vector machine method was
not compared to SignalP. The SVM method finds 68% true positive cleavage sites at
a false positive rate of 3%. This method does not distinguish between eukaryotic and
bacterial sequences.

Very recently a new method, Phobius, designed to improve transmembrane helix topol-
ogy predictions by integrating topology and signal peptide predictions became available42.
Often the first transmembrane helix can be mistaken for a signal peptide and vice versa.
This method was trained on data collected from Swiss-Prot release 41. While the perfor-
mance values are not easy to compare as e.g. the negative data set has been extracted from
PDB using different similarity criteria than those used to develop SignalP14, we made an
evaluation of Phobius, using the same novel sequences from release 42 of Swiss-Prot, as
used in the test of Sigfind described above (note that the comparison between Phobius
and SignalP in the paper was made using the old SignalP 2.0 version). Out of 205 negative
test examples, Phobius generated 4 false positive predictions, whereas SignalP generated
2 false positive predictions. Both methods were able to correctly classify all signal peptide
containing sequences. For discrimination this results in a correlation coefficient of 0.96
for Phobius and 0.98 for SignalP. As also reported in the Phobius paper, the cleavage site
prediction accuracy is below the accuracy of the SignalP method. For this set from Swiss-
Prot rel. 42, Phobius could correctly predict the position of the cleavage site in 75% of the
sequences, while SignalP version 3.0 is able to correctly predict the cleavage site position
in 87% of the sequences. When tested on a very small set of eleven novel, experimentally
verified Gram+ and Gram- sequences from Swiss-Prot release 42, we found that Phobius
predicted 64% of those correctly, while SignalP3 was correct in 82% of the cases. Thus,
for these novel sequences found in the Swiss-Prot database, SignalP performs better, both
in terms of discrimination and cleavage site prediction. Nevertheless, Phobius is indeed
superior over SignalP when it comes to prediction of transmembrane helices close to the
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N-terminus, which are easier to confuse with signal peptides.

Misuse of SignalP

We have noticed that users of SignalP in some cases interpret a positive prediction as
meaning that the protein is extracellular. As many proteins with signal peptides are
retained e.g. in ER/Golgi this is not always the case. Eukaryotic proteins may be retained
in the ER if the protein holds an “ER retention signal”, which is found at the C-terminus
of the mature protein. SignalP does not take such signals into account. It is hard to
assess how often wrong interpretations are made due to lack of experimental data, but for
the data set used to train SignalP3 we found eleven cases with retention signals (based
on Swiss-Prot annotation). The true level of retention is presumably higher.

Another more rare type of wrong use happens when negative predictions are inter-
preted incorrectly. A negative classification by SignalP does not necessarily imply that
the protein is indeed a non-secreted protein, as some protein enters the extracellular space
by non-classical and leaderless pathways. We have dealt with the issue of non-classical
secretion elsewhere43, and have developed the SecretomeP server for this purpose (see
below).

Conclusion

We present new versions of SignalP, based on an expanded, highly curated data set. The
architecture of the hidden Markov model based version was unchanged, while the neural
network scheme was improved by including information of the amino acid composition
of the precursor protein as well as the position of the sliding window. Furthermore,
we optimized the window sizes by testing all possible combinations of asymmetric and
symmetric input windows up to a total input of 51 amino acids. These were changed
slightly compared to the earlier SignalP version.

For all organism groups, we obtained an improvement of the cleavage site predictions
based on the maximal Y-score as defined earlier10. Discrimination between signal peptide
containing sequences and non-secretory sequences was improved by introducing a new
score, the D-score, replacing the mean S-score used for discrimination in earlier SignalP
versions.

On an independent test set (limited to sequences not used for SignalP3 construction)
we achieved better sensitivity, specificity, accuracy and correlation coefficient for the cleav-
age site predictions for all three organism groups. Moreover, we obtained better signal
peptide discrimination in most cases.

The 3.0 version of SignalP that we present here shows in all cases a performance
increase over version 2.0 (see Table 1). This was observed both for the cleavage site
prediction and the signal peptide discrimination. The improved performance of discrim-
ination predictions for the new version of SignalP is partly due to the introduction of
composition units in the neural network input layer.

The improved performance obtained when simultaneously using position and compo-
sition information proves that these features are indeed correlated. We were not able to
figure out in detail how the cleavage site position and the protein composition actually
are correlated, but when inspecting the neural network composition input unit weights, it
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Figure 5: Amino acid composition information. Over- and underrepresentation of amino acids in
the Gram-negative training set and corresponding weights from the composition units in the network to
the hidden units. The unit for neural network weights is arbitrary. Negative numbers indicate overrep-
resentation of the particular amino acid in secretory proteins.
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became clear that the networks readily learn how secreted proteins differ in composition
from non-secretory proteins. Figure 5 shows the over- and underrepresentation of the
twenty amino acids in secretory proteins from Gram-negative bacteria, and the sizes of
the corresponding weights connecting the input composition units and the hidden units.
With the exception of methionine, the sign of these weights reflects directly the over-
or underrepresentation of the amino acids, explaining why this additional input is able
to improve the predictive performance of SignalP3. The amino acid bias in the data
is in agreement with earlier observations21. The picture was similar for eukaryotes and
Gram-positive bacteria (data not shown).

The prediction quality of the new method was significantly better than other methods
performing classification. SignalP3 was compared to other methods made available, with
the exception of older weight matrix approaches. It should be noted that the independent
test set we have used (from Menne et al.), has not been cleaned in the same thorough
manner as the training set. We are aware of several annotation errors in the test that
have not been removed, and therefore the performance of all methods is in practice better
than estimated from this set.

As the discrimination task is quite close to being correct for most sequences, the most
prominent problem in signal peptide prediction is the prediction of the correct cleavage
site. We have thoroughly investigated the data set for cleavage site annotation errors
and many of these were indeed found. One source of error of signal peptide annotation
is the neglect of maturation proteases that act on the protein after the SPase I cleavage.
By cleaning for obvious cleavage site annotation errors, we improved the cleavage site
performance without retraining. This meaning that the old versions indeed had a better
performance than assessed by the old incorrect data.

The method described is made available at http://www.cbs.dtu.dk/services/

SignalP/. The SecretomeP server mentioned above can be found at http://www.cbs.

dtu.dk/services/SecretomeP/

Materials and methods

Data set extraction

All sequence data were extracted from Swiss-Prot15 release 40.0. A total of 12975 entries
with the keyword “SIGNAL” were found. The data set was split into three species specific
groups which are Eukaryotic, Gram-negative prokaryotes and Gram-positive prokaryotes.
We excluded all archaeal sequences. Non experimentally verified signal peptides which
had “POTENTIAL” or “HYPOTHETICAL” stated in the keyword line were removed.
Furthermore, any phage, viral or eukaryote organelle encoded proteins were excluded.
Lipoproteins were also removed. Similarly, we excluded entries with more than one cleav-
age site and entries with non verified N-terminus if indicated in the keyword line. This
reduced the number of signal peptide carrying sequences in the data set to 3902.

In order to remove any bias in the data set, the set was redundancy reduced by
the scheme previously developed, excluding pairs of sequences that were functionally
homologous14. Subsequently no two sequences in the data set have more than 17 (eukary-
otes) or 21 (prokaryotes) identical amino acids in a local alignment. Approximately half
of the remaining sequences were thus removed. This scheme for redundancy reduction
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ensures that, the method does not transfer functional information to one sequence (from
a set of experimentally characterized examples) by mere sequence similarity in the usual
sense as detected by alignment. The SignalP data set preparation paper14 determine how
dissimilar two sequences should be in order to prompt the application of a “discrimina-
tion” method, rather than alignment, for the specific case of signal peptide prediction.
Thus, the performance values reported here correspond to a situation where the inference
cannot reliably be made by alignment.

A few of the remaining sequences were removed from the data set due to their extreme
length. We removed sequences with signal peptides with less than 15 amino acids for all
three organism groups, sequences with more than 45 amino acids for eukaryotes and
Gram-negatives and 50 amino acids for Gram-positive. We did not specifically remove
Tat signal peptides, but some of them were removed due to their length.

For discrimination of secretory proteins versus cytoplasmic proteins we used the old
data set from SignalP version 2.0 of cytoplasmic, nuclear and signal anchor sequences, as
we saw no reason to doubt these. We found and removed one error, though.

Additionally, we cleaned the redundancy reduced data set by additional techniques as
described below.

Our final eukaryotic data set contains 1192 secretory, 990 nuclear 459 cytoplasmic
and 67 signal anchors sequences. The data set for Gram-negative bacteria contains 334
secretory and 358 cytoplasmic sequences. Finally, the data set for Gram-positive bacteria
contains 153 secretory and 151 cytoplasmic sequences.

Further cleaning of the extracted data set

Propeptides

Recently, a eukaryotic propeptide convertase predictor — ProP was developed32. In con-
junction with SignalP version 2.0, we reassigned sequences from the eukaryotic data set,
which seemed to include a propeptide annotated as a signal peptide (see text).

Spurious cleavage site residues

In addition to cleaning the eukaryotic data set for potential propeptide cleavage sites, we
also removed any sequence that contained the basic residues Lysine (K) or arginine (R)
at position −1. Furthermore, we removed all sequences that had residues in position −1
occurring only in a small minority of sequences. For the eukaryotic data set the only
allowed residues at position −1 were, alanine (A), cysteine (C), glycine (G), leucine (L),
proline (P), glutamine (Q), serine (S) and threonine (T). For Gram-positive and Gram-
negative bacteria only alanine (A), glycine (G), serine (S) and threonine (T) were allowed
at position −1, according to the cleavage site.

Database annotation errors

After initial training of our method, the data set was manually cleaned for errors that
could be related to annotation errors. These erroneous annotations were identified as
predictions made by the neural network, which did not correspond with the annotation
from Swiss-Prot. Only errors that could be identified manually and confirmed from the
corresponding papers were removed or reannotated.
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List of sequence entries for Gram-negative bacteria that were either reannotated
or removed from the training set: PGL2 ERWCA, YBCL ECOLI, OMLA PSEAE, CBPG PSES6,
BLP2 PSEAE, GUNC PSEFL, HLYB PROMI, FPTA PSEAE, CY1 PARDE.

List of sequence entries for Gram-positive bacteria that were either reannotated
or removed from the training set: XYNC STRLI, CHOD STRSQ, HYSA PROAC, BLAF MYCFO,
AGAR STRCO, CHOD BREST, CHOD STRSQ, IMD ARTGO, ALDC BACBR, BLAC STRAU, GUNG CLOTM,
GUNH CLOTM, TACY STRPY, TEE6 STRPY, THI1 PANTH, XYN1 BACST, AMY BACSU, CHI1 BACCI.

This approach has not been carried out on the eukaryote training set.
All errors found in the training sets have been reported to Swiss-Prot.

Independent test set

During previous work for an evaluation of signal peptide predictors, an independent test
was created12. The positive test set was divided into three groupings corresponding to
eukaryotes, Gram-negative and Gram-positive bacteria. Sequences already found in the
SignalP3 training set were removed to prevent artificially high performance measure for
the SignalP method when testing. This resulted in 557 eukaryotic, 100 Gram-negative
and 42 Gram-positive sequences which were used as a positive test set. In the eukaryotic
negative test set, sequences carrying mitochondrial transit peptides were removed. The
negative test set consisted of 1056 eukaryotic, 289 Gram-negative and 129 Gram-positive
sequences.

The three negative test sets were investigated using TMHMM40 for presence of trans-
membrane helices within the first 60 amino acid of each sequence. For the 129 Gram-
positive cytoplasmic sequences we found 12 sequences with one transmembrane helix
within the first 60 amino acids. 32 sequences out of the 289 Gram-negative cytoplasmic
sequences carry a (predicted) transmembrane helix within the first 60 amino acids, where
123 out of 1056 eukaryotic cytoplasmic sequences carry a helix within the first 60 amino
acids of each sequence.

Neural network architecture

We used two different neural networks for coping with the signal peptide prediction prob-
lem. One network for recognition of the cleavage site, and one network for determining
whether a given amino acid belongs to the signal peptide or not. A more thorough de-
scription of the neural network has been presented in a previous paper33

Furthermore, we improved the neural network by introducing new input features.
These features were position of the sliding window as a parameter together with the
amino acid composition of the entire sequence.

Position of the sliding window was used as an input neuron in the neural network for
cleavage site prediction and for the discrimination of signal peptides. Composition neurons
were only introduced as additional neurons into the neural network for discrimination of
signal peptides versus non-signal peptides, as they did not improve the cleavage site
prediction.

Also, we optimized the window sizes by testing all combinations of symmetric and
asymmetric windows varying from 3 to 51 positions.
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Measuring prediction performance

Performance of the prediction method was carried out on different data sets. Firstly, we
used the same measure of performance as used in earlier versions of SignalP i.e. cross-
validation on the training set, meaning that the data set was split into five equally sized
parts and trained on four and tested on one for a total of five times until all sequences
had been used for training and testing, respectively.

Performance of the prediction method on the novel part of the Menne et al. test set12

was measured as the sensitivity, giving the fraction of positive examples truly predicted
as positive.

sensitivity =
tp

tp + fn
. (1)

The specificity gives the fraction of all positive predictions that are true positives,

specificity =
tp

tp + fp
. (2)

Accuracy gives the fraction of all true predictions, both true positive and true negative,

accuracy =
tp + tn

tp + tn + fp + fn
. (3)

The Matthews correlation coefficient44 is defined as,

cc =
tp · tn− fp · fn√

(tp + fn)(tp + fp)(tn + fp)(tn + fn)
(4)

and was used in calculation of optimal network performance during the training.
Here, tp = true positive and tn = true negative and fp = false positive and fn = false
negative.

New discrimination score

Previous versions of SignalP showed the best discrimination of signal peptides versus
non-signal peptides, by using the mean S-score calculated as the average of the S-score
in the predicted signal peptide region. We have implemented a new score for better
discrimination called the D-score. The D-score is simply an average of the mean S-score
and the maximal Y-score, where the Y-score is defined as,

Yi =
√

Ci∆dSi, (5)

where ∆dSi is the difference between the average S-score of d positions before and d
positions after position i:

∆dSi =
1

d
(

d∑

j=1

Si−j −
d−1∑

j=0

Si+j). (6)
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