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Background. Binding of peptides to Major Histocompatibility Complex (MHC) molecules is the single most selective step in the
recognition of pathogens by the cellular immune system. The human MHC class I system (HLA-I) is extremely polymorphic. The
number of registered HLA-I molecules has now surpassed 1500. Characterizing the specificity of each separately would be
a major undertaking. Principal Findings. Here, we have drawn on a large database of known peptide-HLA-I interactions to
develop a bioinformatics method, which takes both peptide and HLA sequence information into account, and generates
quantitative predictions of the affinity of any peptide-HLA-I interaction. Prospective experimental validation of peptides
predicted to bind to previously untested HLA-I molecules, cross-validation, and retrospective prediction of known HIV immune
epitopes and endogenous presented peptides, all successfully validate this method. We further demonstrate that the method
can be applied to perform a clustering analysis of MHC specificities and suggest using this clustering to select particularly
informative novel MHC molecules for future biochemical and functional analysis. Conclusions. Encompassing all HLA
molecules, this high-throughput computational method lends itself to epitope searches that are not only genome- and
pathogen-wide, but also HLA-wide. Thus, it offers a truly global analysis of immune responses supporting rational
development of vaccines and immunotherapy. It also promises to provide new basic insights into HLA structure-function
relationships. The method is available at http://www.cbs.dtu.dk/services/NetMHCpan.
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INTRODUCTION
Proteins are essential immune target structures. Being extremely

diverse, they constitute unique imprints of their source organisms

and provide-even at the peptide level-sufficient target identifica-

tion and discrimination (reviewed in [1]). The cytotoxic T

lymphocyte (CTL) arm of the T cell immune system represents

a prime example of peptides being used as immune targets. CTL’s

are aimed at intracellular pathogens and obtain information on

the intracellular environment of our cells through a series of

cellular events involving HLA-I-mediated antigen processing and

presentation of peptide epitopes derived from the intracellular

protein metabolism, including that of intracellularly located

pathogens (reviewed in [2]). A detailed description of how the

immune system handles proteins and generates peptide could

enable scientists and clinicians to analyze any protein of interest

for the presence of potentially immunogenic CTL epitopes.

Scanning entire proteomes computationally should further enable

a rational approach to vaccine development, immunotherapy and

diagnostics. Thus, candidate epitopes might be predicted from the

various microbial genome projects, tumor vaccine candidates from

mRNA expression profiling of tumors (‘‘transcriptomes’’) and

auto-antigens from the human genome (reviewed in [1,3]).

The single most selective event in antigen processing and

presentation is that of peptide binding to HLA-I. It has been

estimated that only 1 in 200 peptides will bind to a given MHC

class I molecule with sufficient strength to elicit an immune

response [2]. This makes it particularly important to establish

accurate descriptions and predictions of peptide binding to HLA-I

molecules [2]. It is not a simple task since the genes encoding HLA

proteins are extremely polymorphic giving rise to many different

peptide binding specificities being expressed in the human

population. Sette and Sidney clustered HLA-I molecules into

supertypes [4,5] according to peptide binding specificities.

Although the HLA-I supertype concept does reduce the

complexity of the HLA-I system, there is still an unmet need to

increase the coverage of HLA-I specificities as most existing HLA-

I molecules have no or poorly characterized supertype relation-

ships. Furthermore, at the present rate of discovery of HLA

specificities, it would be a very demanding task to keep up with the

increasing number of registered HLA molecules. Clearly, there is

a need for a more efficient approach to analyze HLA-I

specificities.

The analysis of HLA-I specificities have classically entailed the

identification of peptide binding motifs (characterized primarily by

the requirement for a few properly spaced and essential primary

anchor residues) through pool sequencing of MHC eluted peptides

[6] and/or the generation of a representative set of peptide
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binding data [7,8]. Once such information has been obtained, the

next step has been to generate peptide-binding predictions using

either simple motif searches strategies [8] or complete statistical

matrices representing the frequency of each amino acid in each

position [9–13]. More recently, the growing amount of peptide-

binding data has supported the generation of more sophisticated

data-driven bioinformatics approaches including artificial neural

networks, hidden Markov models, and support vector machines

[14–20]. Artificial Neural Networks (ANN) are ideally suited to

recognize non-linear patterns, which are believed to contribute to

peptide-HLA-I interactions [15,16,21,22]. In an ANN, informa-

tion is trained and distributed into a computer network with an

input layer, hidden layers and an output layer all connected in

a given structure through weighted connections [23]. They are

trained to recognize inputs (e.g. peptide sequences) associated with

a given output (e.g. binding affinity). Once trained, the network

should recognize the complicated input patterns compatible with

binding. In a recent study, the ANN approach was found to be

a highly efficient prediction mechanism for peptide-HLA-I

interactions [24].

In general, HLA-I binding predictions depend on sufficient

experimental data being available for the exact HLA-I molecule in

question. Unfortunately, less than 10% of the 1500 [25] registered

HLA-I proteins have been examined experimentally, and less than

5% have been characterized with more than 50 examples of

peptide binders [26,27]. Furthermore, focus has been towards the

most prevalent Caucasians HLA-I molecules, which are not

necessarily those prevalent among other populations, which are in

more urgent need of new vaccine initiatives. By way of example,

only two of the six HLA-A alleles, which are found with phenotype

frequencies above 10% in Sub-Saharan African populations, are

found above the 2–4% level in Caucasians; only three out of seven

HLA-A alleles, which are found with phenotype frequencies above

10% in South-East Asian populations, are found above the 1%

level in Caucasians; only three out of five HLA-A alleles, which are

found with phenotype frequencies above 10% in South-American

populations, are found above the 1% level in Caucasians etc. [28].

To overcome this problem, several (frequently computer intensive)

prediction algorithms have been proposed using the three

dimensional structure of the MHC molecule, and empirical or

semi-empirical force fields, to estimate the peptide-HLA-I binding

affinity [29–32]. Obviously, to extend this approach beyond the 17

HLA-I molecules currently solved at the structural level requires

some kind of structural modeling [33]. Searching for alternative

solutions, we here propose a novel method, NetMHCpan, exploiting

both peptide and primary HLA sequence as input information for

ANN-driven predictions pooling all available data and at the same

time incorporate all HLA specificities. The method is successfully

demonstrated to predict the affinity of interaction of any peptide

with any human HLA-A or HLA-B molecule i.e. the method is

pan-specific. Where other groups earlier have suggested similar

prediction strategies to span limited regions of the HLA diversity

[34–36], to the best of our knowledge, this is the largest database

of HLA binding events ever used for this purpose, and the first

report describing predictors applicable to a complete analysis of all

HLA-A and -B specificities.

RESULTS
A large set of quantitative peptide-HLA binding data was used as

input to train the NetMHCpan method. Both peptide and HLA

primary sequences would subsequently be used as input for the

method, and as output one should retrieve the predicted peptide-

HLA-I binding affinity (for details see Materials and Methods).

Experimental validation
A prospective validation was performed using NetMHCpan to

identify peptides, which would bind to HLA molecules that

specificity-wise were unknown to us. For each HLA molecule, the

binding affinity was predicted for a set of 500,000 random

nonameric peptides of pathogenic, or human, origin. Only

peptides predicted to bind with an affinity stronger than 50 nM

were selected, and from this set of predicted binders, a subset of

10–15 peptides with low mutual sequence similarity (i.e. avoiding

redundancy) was selected. These peptides were then tested for

binding to the relevant HLA molecule in an in vitro binding assay

[37]. More than 86% of the predictions were experimentally

confirmed as binders with KD values below 500 nM (many

peptides bound with affinities better than 5 nM, see Figure 1).

Thus, the pan-specific prediction approach was capable of

extracting HLA sequence information and correctly relating this

to peptide binding even in the absence of any data for the specific

query HLA molecule.

Leave-one-out validation
The ultimate validation of the predictive performance of the pan-

specific approach is obtained by using the NetMHCpan method

to identify peptide binders for MHC molecules that are

specificity-wise unknown. This we have shown above for two

alleles HLA. As another evaluation of the predictive performance

of the pan-specific approach we performed a simulated ‘‘blind’’

leave-one-out validation. Here, we trained networks using all

data for the relevant loci, HLA-A or -B, except the data for the

molecule in question (i.e. a ‘‘leave-one-out’’ validation, here after

refereed to as Pan). This was done for all HLA molecules

represented in the data set. Thus, in this evaluation, no peptide-

HLA binding data from the validation set was included in the

training of the pan-specific predictor. For comparison, predic-

tions were also trained solely on peptide binding data (i.e.

without considering HLA sequence information) and using

conventional cross-validation (see Materials and Methods). For

each allele under consideration, we trained three such conven-

tional single allele cross-validated networks based on different sets

of peptide binding data: (1) data from the exact HLA molecule in

question (Self), (2) data from the most closely related HLA

molecule as identified by similarity between the HLA sequences

(Neighbor), and (3) data from a previously selected representative

of the HLA supertype [5] (Supertype; clearly this comparison

cannot include the representative itself). This leave-one-out

experiment thus constitutes a highly rigorous validation of the

pan-specific method. By performing the leave-one-out experi-

ment of all 42 alleles included in the benchmark data set, we can

validate the performance of the NetMHCpan method on 42 alleles

with uncharacterized binding specificity.

Some highlights of the ‘‘leave-one-out’’ analysis are shown in

Table 1 (the complete data is given in Table S1). Perhaps not

surprising, Self often performed better than Pan. However, it is

noteworthy that all alleles, where Pan performed best, were

characterized by very little data (57 to 141 peptide data points)

being available. More pertinent for this work, however, Pan had

a significantly higher predictive performance than both the

Neighbor and Supertype methods (p,0.005 in both cases). Plotting

the Pan performance against the distance between the query HLA

and its nearest neighbor (as determined from the similarity

between the two HLA sequences), it became apparent that the Pan

predictor performed better when the query HLA molecule was

represented by closely related HLA molecules (see Figure 2 and

Table S2).

Pan-Specific HLA Binding
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Examples of how HLA molecules, which are sparsely populated

in terms of available peptide binding data, can be represented by

related and well-populated HLA molecules is provided in

Table 1A. Here, the performances of Pan are much better than

those of the corresponding Self. In agreement, there are very few

peptide binding data points (between 51 and 141 data point) for

these HLA-A molecules, however, in total there are more than

11,000 data points for closely related HLA-A*02xx molecules.

How sparsely populated HLA molecules cannot serve as HLA

representatives is demonstrated in Table 1B. For HLA-A*2601 the

Pan method has a much lower performance than the Self-method,

whereas the converse is true for the closely related HLA-A*2602.

This is in agreement with the fact that HLA*2601 is well

populated with peptide binding data, whereas HLA-A*2602 is not.

There is thus sufficient HLA-A*2601 data to represent HLA-

A*2602, but not vice versa. A similar phenomenon can be

observed for HLA-B*5801 vs. HLA-B*5701 and HLA-B*4001

versus HLA-B*4402. As shown in Table 1C, the HLA-B*2705

Self-performance is excellent, whereas the Pan, as well as Neighbor,

performances are appalling. This is in agreement with the amount

of data available; there are 1251 self-data points, but no clear

representative of HLA-B*2705 (the difference in HLA sequence to

the nearest neighbor is very high, see Figure 2 and Table S2).

Similar, although less dramatic, observations are made for HLA-

A*0101, and HLA-B*0702. Finally, HLA-A*6801 provides an

example of how the Pan-networks avoids completely misleading

Neighbor predictions (see Table S1). For HLA-A*6801, the nearest

neighbor is HLA-A*6802, however, using the HLA-A*6802

predictor as HLA-A*6801 representative had a very poor

predictive performance of 20.04. In contrast, the predictive

performance of the Pan-networks for HLA-A*6801 is 0.62.

A summary of the leave-one-out experiment is given in

Table 1D. For the HLA-A locus molecules, the Pan approach

performed slightly better than Self and much better than Neighbor or

Supertype (P,0.001), thus providing strong unbiased overall support

for the pan-specific approach. For the HLA-B locus molecules, the

Pan approach performed slightly poorer than Self, but still

significantly better than both the Neighbor, and Supertype approaches

(P,0.005). The performance difference between HLA-A and -B

locus molecules is most likely the result of the more limited amount

of available HLA-B data trying to cover an even greater span of

sequence and binding motif diversities (i.e. see Figure 2, and the

fact that 7 HLA-B supertypes are defined as compared to 5 for the

HLA-A locus).

The final NetMHCpan predictors
Often small data sets contain a strong bias for both the negative

and positive data since the data was selected to fit some predicted

binding motif. One way to lower a potential bias in the negative

data set is to add random data with assumed weak binding affinity

values [18]. For HLA it is a reasonable assumption that randomly

chosen peptides will be non-binders, and the ANN methodology is

reasonably robust against the occasional error introduced. Thus,

for the remaining work, we added 100 random peptides to all data

sets. This did indeed improve all the predictions that depended

upon sparsely populated HLA representatives (e.g. Pan predictions

for HLA-A*2601 and HLA-B*5801). The predictive performance

for the leave-one-out pan-specific predictors trained including

added random negative data is shown in Table 2.

The final HLA-A and HLA-B pan-specific ANNs were trained

on the complete datasets in a fivefold cross-validated manner on

the complete data set abandoning the leave-one-out approach (see

Materials and Methods). The Pearson correlation [38] for each

HLA molecule was compared to that of the corresponding Self-

networks. As illustrated in Table 3, the two approaches had

comparable predictive performance. As the pan-specific neural

network method demonstrates ability to encompass all HLA-A

and HLA-B molecules, we denote the final pan-specific methods,

NetMHC-panA, and NetMHCpanB, respectively.

We can estimate the sensitivity and specificity of the NetMHCpan

method from the predictions of the 37,384 peptide data included

in the benchmark. For a classification threshold of 500 nM, we

find that the method has a specificity of 0.95, and a sensitivity of

0.74. Further, we find that 83% of the predicted binders are

indeed experimentally verified binders. A complete table de-

scribing the relation between sensitivity and specificity is given in

Table S3.

Identification of HLA supertypes
The pan-specific approach relies on the ability of the neural

networks to capture general features of the relationship between

Figure 1. Prospective validation using hitherto uncharacterized HLA
molecules. The upper figure gives the IC50 binding values for the sets of
peptides identified by the NetMHCpan method to bind two hitherto
uncharacterized HLA-A*8001, and HLA-A*7401 molecules. The peptides
were selected as described in the text. 86% of the tested peptides bind
stronger than 500 nM. The lower figure shows a Kullback-Leibler [52]
logo visualization of the HLA binding motifs as predicted by the
NetMHCpan method. Peptide binders used to generate the logos for each
HLA molecule were selected from a pool of 500,000 random natural
nonamers using the NetMHCpan method with a binding threshold of
500 nM. The logos were generated with the logo program of Schneider
and Stephens [53]. Note that the binding motifs visualized in the logo
plot are estimated from a set of approximately 5000 predicted binders,
whereas the validated peptides only make up of the top 0.2%.
doi:10.1371/journal.pone.0000796.g001
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peptides and HLA sequences, and interpret these in terms of

binding affinity. Having demonstrated the predictive strength of

the approach to identify the binding motif of uncharacterized

HLA molecules, we now used the pan-specific ANNs to cluster

HLA molecules according to predicted peptide binding specificity.

Pruned HLA distance trees were calculated as described in

Materials and Methods. Figure 3A depicts a tree including 36

representatives of the currently known HLA-A molecules, and

Figure 3B a tree including 51 representatives of the known HLA-B

molecules. The overall structure of the two new trees is in

accordance with the supertype clustering proposed earlier by Sette

and Sidney [4] and later extended by Lund et al, [5] according to

which the HLA-A locus consists of five major supertypes A1, A2,

A3, A24, and A26, and the HLA-B locus of seven major

supertypes, B7, B8, B27, B39, B44, B58, and B62. However, the

present analysis includes all known polymorphic HLA-A and -B

molecules and suggests the existence of novel HLA supertypes,

such as B51/B55, B35 (both split from B7), and A33, with

specificities different from those described by previously defined

HLA supertypes. Note also the assignment of the A*3001 molecule

in the HLA-A tree. The A*3001 molecule has been variously

clustered; by some to A3 [39], by others to A24 [4], and recently to

A1 [5]. By the present analysis, it should belong to the A3

supertype. Reassuringly, this has subsequently been confirmed

experimentally (Lamberth et al, manuscript in preparation).

Identifying endogenously presented peptides
The NetMHCpan method was further validated using a large set

of HLA ligand data. Nonamer HLA ligand data restricted to

HLA-A and HLA-B alleles not included in the training data of the

NetMHCpan method were downloaded from the SYFPEITHI

database [11]. This set consists of 326 MHC ligands restricted to

43 different HLA-A and HLA-B alleles. For every peptide, the

source protein was found in the SwissProt database [40]. If more

than one source protein was possible, the longest protein was

chosen. All nonameric peptides contained in the source protein

sequences, except the annotated HLA ligand were taken as

negative peptides. For each protein-HLA ligand pair the predictive

performance was estimated as the percent rank of the HLA ligand

among all nonamer peptides in the protein sequence. Performing

this ranks calculation for all the 326 HLA ligands, we find a median

rank of 1.4%. For half of the protein sequences, the HLA ligand is

thus found within the top 1.4% highest scoring peptides. In

a protein of size 300 amino acids, the HLA ligand will thus on

average be ranked 4. The mean rank is 4.4%. These results

demonstrate the predictive power of the pan-specific method to

perform accurate predictions also for HLA alleles not included in

the training.

Predicting known HIV immunogens
As a final independent validation of the NetMHC approach, we

analyzed all CTL nonamer epitopes reported with full HLA

annotation in the Los Alamos HIV database (www.hiv.lanl.

gov)[41]. This dataset contains 182 epitopes covering 49 HLA

molecules (8 of these are of unknown HLA supertype assignment).

The peptide-HLA binding affinity was predicted with NetMHC-

panA or-panB using the annotated HLA molecule, and, when

possible, with NetMHC (a previously reported HLA prediction

tool available as www.cbs.dtu.dk/services/NetMHC) using the

supertype representative. At a binding threshold of 500 nM,

NetMHC identified 41% of the known epitopes, whereas the

NetMHCpanA and -panB identified 52% (both approaches rejecting

.98% of a random collection of nonamer peptides). Thus, the

Figure 2. Predictive performance of the NetMHCpan method as a function of the distance to its nearest neighbor HLA allele. The nearest

neighbor distance is estimated from the alignment score of the HLA pseudo sequences using the relation d~1{
s(A,B)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s(A,A):s(B,B)

p , where s(A,B) is the

BLOSUM50 alignment score [47] between the pseudo sequences for alleles A and B, respectively. HLA-A alleles are shown as solid circles. HLA-B
alleles are shown as +. The Pearson correlation coefficient between the pseudo sequence distance and the predictive performance for the 42 HLA
alleles included in the plot is 0.67. Note, that the distance measure inherently assumes that all residues are equally important and independent of the
pseudo sequence context. While this assumption is obviously inconsistent with the reality of primary anchors, it meets another essential requirement;
it is simple and unbiased.
doi:10.1371/journal.pone.0000796.g002
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pan-specific approach recognized about 25% more known

epitopes than an HLA supertype based approach.

DISCUSSION
Predictions of T cell epitopes have the potential to provide important

information for rational research and development of vaccines and

immunotherapies (reviewed in [1,42]). Being computational, these

tools enable a rapid and complete genomics analysis of all available

pathogen isolates. Unfortunately, at this time they only cover a few of

the many HLA specificities found in human populations. The method

proposed here offers a complete incorporation of all human HLA

specificities thereby covering a significant aspect of human immune

diversity. Several groups have tried to develop methods for predicting

which peptides will bind to a given HLA molecule [10,14–20,43,44].

All such efforts have faced the problems of the limited amounts (or

lack) of data available for most of the different HLA molecules present

in the human population. Here, we report a pan-specific approach

overcoming the problems of lacking specific binding data during the

methods development. The major advantage of the pan-specific

approach is that it predicts the binding of any peptide to any present

and future HLA molecule, even in absence of data specific for the

query HLA molecule, whereas conventional data-driven prediction

approaches are restricted to predict the binding of peptides solely to

the particular HLA molecules included in the training. In the past,

others have proposed to similar strategies to span limited regions of the

HLA diversity [34–36]. However, this is to our knowledge the first

time data sets of this size have been available to do a complete analysis

of all HLA-A and -B specificities.

The large-scale leave-one-out experiment, covering 42 distinct

HLA-A and HLA-B alleles, provided unbiased support of the validity

of the pan-specific ANN approach. It suggests that a pan-specific

approach-given that there is sufficient and representative data

available-is preferable to conventional approaches using single-allele

specific prediction methods as defined by nearest Neighbor or Supertype

representation. The pan-specific method is even preferable to

conventional Self single-allele approach in cases where only limited

data is available (e.g. 5 out of 6 HLA-A2 molecules with only few

peptide data). It stresses the importance of the availability of large and

representative HLA binding data, and it suggests that the de-

velopment of the next generations of improved pan-specific predictors

can be optimized through targeted selection of peptides and HLA

molecules for future data inclusion.

The HLA supertype concept proposed by Sette and co-workers

[4] suggested an approach to reduce the complexity of the

polymorphism of the HLA. Several groups have developed

methods for prediction of ‘‘promiscuous’’ HLA binders within

known HLA supertypes [35,36,45]. However, all these methods

require prior knowledge about the HLA supertype relationship,

which for most HLA molecules remain undefined. Further, even if

the supertype relationship is known, peptides identified to bind to

a representative HLA molecule within a supertype might not bind

to one or several of the other members of the same supertype. At

the population level, the pan-specific approach promises an

alternative strategy to handle HLA polymorphism and improve

coverage in vaccine design. Rather than including one or more

peptides restricted to each of the HLA supertypes, one could use

the pan-specific HLA predictors in conjunction with the HLA

frequency distribution within an ethnic population in question to

select epitopes that will provide the broadest possible population

coverage. A computer simulation of such a strategy for HIV

specific CTL epitope identification suggest that coverage could be

improved from some 90% for a supertype representation strategy

to almost 100% for a pan-specific strategy (data not shown). At the

individual level, it is obvious that the ability to handle any HLA

molecule that a given patient might have irrespective of the

availability of specific data for a particular HLA haplotype in

question is an enabling technology for individualized immuno-

therapy and diagnostics.

It is implicitly clear that the pan-specific approach relies on the

ability of the neural networks to capture general features of the

Table 1. Comparison of various validated predictors of
peptide-HLA binding.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(A)

ANN A*0211 A*0212 A*0216 A*0219

Pan 0.60 0.85 0.72 0.71

Self 0.26 0.67 0.46 0.52

Neighbor 0.49 0.74 0.56 0.56

Supertype 0.49 0.74 0.56 0.65

# Data points 141 113 57 137

(B)

ANN A*2601 A*2602 B*5801 B*5701 B*4001 B*4402

Pan 0.48 0.76 0.39 0.68 0.53 0.78

Self 0.80 0.67 0.84 0.83 0.82 0.71

Neighbor 0.25 0.75 0.55 0.69 0.59 0.77

Supertype NA 0.75 NA 0.69 NA 0.27

# Data points 1032 76 1340 59 1257 119

(C)

ANN B*2705 A*0101 B*0702

Pan 0.03 0.36 0.49

Self 0.82 0.88 0.88

Neighbor 0.21 0.27 0.53

Supertype NA NA NA

# Data points 1257 1213 1572

(D)

ANN (locus average) HLA-A HLA-B

Pan 0.75 0.69

Self 0.73 0.78

Neighbor 0.57 0.61

Supertype 0.57 0.45

# Data points 26503 10881

Experimental peptide-HLA binding data was used to develop artificial neural
networks. The numbers given in the table are the Pearson correlation coefficients
between the logarithmically transformed predicted binding affinities (KD values)
and logarithm transformed observed binding affinities (KD values). In bold are
highlighted the maximum values in each column. (A) illustrates how poorly
populated HLA molecules are more accurately predicted by the pan-specific
leave-one molecule-out (Pan) predictor than by any of the conventional single
allele predictors, even those generated using the data for the molecule in
question. (B) illustrates that the pan-specific Pan predictor is only accurate when
it has been trained on well-populated and relevant data. (C) illustrates that the
pan-specific Pan predictor is inaccurate when no relevant data was included in
the training sets. (D) illustrates the average performance for the HLA-A and –B
locus molecules including random negative data. Note, only non-supertype
representative alleles are included in the average. The predictors are Pan: the
pan-specific ANN trained on data emanate from all members of the locus in
question (i.e. HLA-A or –B) except for the member in question; Self: The most
stringent comparison would be to use cross-validated ANN generated using data
from the member in question, Neighbor: In the absence of self data, the next best
alternatives would be to use cross-validated ANN generated using data from the
most closely related member by BLOSUM comparison of the HLA-A (-or-B)
pseudo-sequences, or Supertype: use cross-validated ANN generated using data
from the member representing the supertype.
doi:10.1371/journal.pone.0000796.t001..
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relationship between peptides and HLA sequences, and interpret

these in term of binding affinity. Using a polymorphism-based

definition of the pseudo sequence (see Materials and Methods), we

were able to generate pan-specific predictors of comparable predictive

performance to that of predictors defined using the structure-based

definition (data not shown). This supports our contention that the pan-

specific approach amounts to a virtually complete analysis of the

structure-function relationship of the polymorphic HLA system. It

remains to be seen whether a deconvolution of the pan-specific ANN

can unlock such information.

Intriguingly, our pan-specific predictors were able to predict

peptide binders of closely related primate MHC class I molecules.

For six of the most common Chimpanzee alleles represented in the

Immune Epitope Database [27], more than 55% of the

experimentally verified nonamer peptide binders could be

predicted while maintaining a specificity of .95% (data not

shown). This suggests that the specificity of closely related primate

MHC molecules overlaps extensively with that of HLA molecules

as earlier proposed by Sidney and co-workers[46]. We are

currently investigating whether the pan-specific predictors can

be used to identify peptide binders for, and perhaps even identify

supertype relationships of, non-human primate MHC molecules

(Nielsen et al., manuscript in preparation).

The current versions the NetMHCpanA and -panB are publicly

available at www.cbs.dtu.dk/services/NetMHCpan. We will

continuously update this service as more data become available.

In the future, we expect to expand it to cover HLA-C, HLA class

II, as well as non-human MHC molecules.

MATERIALS AND METHODS

Source data
Nonameric peptide-HLA binding data was obtained from two

sources: peptide-HLA binding data recently published by Sette

and coworkers [24], and data recently deposited at the IEDB by

Buus and coworkers. In total, the data set consisted of 37,384

Table 2. Performance for the different alleles in terms of the
Pearsons correlation for the ‘‘leave-one-out’’ experiment with
added random negatives.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(A) Predictors of HLA-A locus molecules (with random negatives)

Pan Self Neighbor Supertype Count

A0101 0.46 0.88 0.26 A1101 A1 1213

A0201 0.87 0.89 0.82 A0206 A2 3876

A0202 0.81 0.81 0.74 A0203 0.76 A2 1447

A0203 0.87 0.89 0.83 A0202 0.82 A2 2046

A0206 0.79 0.82 0.76 A0201 0.76 A2 2055

A0211 0.63 0.39 0.47 A0201 0.47 A2 141

A0212 0.85 0.59 0.73 A0201 0.73 A2 113

A0216 0.76 0.31 0.52 A0201 0.52 A2 57

A0219 0.75 0.57 0.59 A0212 0.61 A2 137

A0301 0.79 0.84 0.76 A1101 A3 2488

A1101 0.84 0.87 0.80 A0301 0.80 A3 2247

A2301 0.77 0.71 0.76 A2402 0.58 A24 167

A2402 0.81 0.85 0.78 A2301 0.71 A24 418

A2403 0.83 0.84 0.82 A2402 A24 321

A2601 0.69 0.79 0.53 A2602 A26 1032

A2602 0.71 0.69 0.70 A2601 0.70 A26 76

A2902 0.69 0.86 0.07 A3101 0.53 A3 160

A3001 0.68 0.82 20.11 A3002 0.68 A3 931

A3002 0.65 0.64 0.37 A3001 0.36 A1 92

A3101 0.77 0.84 0.62 A3301 0.53 A3 2123

A3301 0.66 0.76 0.56 A3101 0.09 A3 1140

A6801 0.62 0.80 20.05 A6802 0.28 A3 1141

A6802 0.74 0.78 0.60 A6901 0.31 A2 1434

A6901 0.76 0.81 0.72 A6802 0.62 A2 1648

Ave 0.74 0.75 0.57

Ave ex supertypes 0.75 0.73 0.57 0.57 Sum 26503

(B) Predictors of HLA-B locus molecules (with random negatives)

Pan Self Neighbor Supertype Count

B0702 0.55 0.88 0.53 B0801 B7 1572

B0801 0.62 0.75 0.53 B0802 B8 812

B0802 0.59 0.86 0.76 B0801 0.76 B8 724

B1501 0.41 0.83 0.37 B3501 B62 1284

B1801 0.76 0.85 0.30 B3501 0.28 B62 290

B2705 0.05 0.82 0.15 B4002 B27 1257

B3501 0.68 0.79 0.63 B5301 0.48 B7 982

B3901 0.48 0.71 0.24 B0801 B39 81

B4001 0.59 0.82 0.55 B4002 B44 1257

B4002 0.82 0.75 0.68 B4001 0.68 B44 118

B4402 0.80 0.70 0.77 B4403 0.29 B44 119

B4403 0.79 0.74 0.70 B4402 0.43 B44 119

B4501 0.54 0.73 0.50 B4402 0.12 B44 114

B5101 0.58 0.79 0.57 B5301 0.40 B7 244

B5301 0.75 0.79 0.69 B3501 0.43 B7 254

B5401 0.57 0.80 0.36 B0702 0.36 B7 255

B5701 0.68 0.72 0.69 B5801 0.69 B58 59

B5801 0.45 0.85 0.66 B5701 B58 1340

Ave 0.59 0.79 0.54
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(A) Predictors of HLA-A locus molecules (with random negatives)

Pan Self Neighbor Supertype Count

Ave ex supertypes 0.69 0.78 0.61 0.45 Sum 10881

Performance values for the ‘‘leave-one-out’’ experiment with added random
negatives. (A) shows the performance for the 24 HLA-A alleles, and (B) the
performance for the 18 HLA-B alleles. The first column gives the allele name, the
following columns the performance of the Pan, Self, Neighbor, and Supertype
methods, respectively, as explained in the text. After the Neighbor and
Supertype performance values is shown the neighbor allele name and supertype
association, respectively. Note, that the supertype performance is only stated
for the non-supertype representing alleles. The final column gives the number
of peptide data for each allele.
doi:10.1371/journal.pone.0000796.t002..
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Table 3. Performance of the pan-specific binding predictors.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ANN HLA-A HLA-B

NetMHCpan 0.77 0.77

Self 0.75 0.79

The average performance per locus of the pan-specific NetMHCpanA and –panB
predictors vs. single allele specific ANN’s trained using only data from available
self-HLA molecules. Training and validation is done in a conventional cross-
validated manner as described in Materials and methods with added random
natural negative peptides.
doi:10.1371/journal.pone.0000796.t003..
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unique peptide-HLA interactions covering 24 HLA-A alleles and

18 HLA-B alleles (26503 and 10881 for the A and B alleles,

respectively). Some 2600 peptide-HLA interactions were present

multiple times and the average IC50 value was assigned as the

peptide affinity. The majority of the peptides present in both

dataset have very similar binding affinities, and 97.5% of those

peptides share annotated binding affinities within a 1.5 fold range.

Only less than 1% of the peptides differ with more than 10 folds in

annotated binding affinity, and the two data sets are thus highly

consistent. The number of peptide data for each of the 42 alleles is

listed in Table S4.

HLA pseudo sequence
The HLA sequence was encoded in terms of a pseudo-sequence

consisting of amino acid residues in contact with the peptide. The

contact residues are defined as being within 4.0 Å of the peptide in

any of a representative set of HLA-A and -B structures with

nonamer peptides. Only polymorphic residues from A, B, and C

alleles were included giving rise to a pseudo-sequence consisting of

34 amino acid residues. Notice that due to multiple possible

conformations, the central peptide residues could choose to

interact with different subsets of residues in the binding groove.

All such residues were included in the pseudo-sequence. The

interaction map between the peptide and HLA sequence is given

in Figure 4.

Neural network training
Artificial neural networks were trained to quantitatively predict

peptide-HLA binding. As input data, we used both peptide

sequences and HLA primary sequence information, and as output

data we used experimentally determined affinity data. The peptide

data was obtained as described above. The primary HLA

sequence information was obtained from the Anthony Nolan

database (http://www.anthonynolan.org.uk/HIG/) and reduced

to the 34 amino acid pseudo-sequence as described previously.

The data was randomly split into five subsets, and five individual

networks were trained each using 4/5 of the data to update the

network weights and 1/5 to decide when to terminate the training

(i.e. a five-fold cross-validation). Architectures with hidden neurons

in the range 22 to 86 were tested, and the network with the highest

prediction performance (lowest square error) on the test set was

selected. The neural network architecture used was a conventional

feed-forward network with one hidden layer and a single neuron

output layer. A back-propagation procedure was used to update

the weights in the network. For each data point, the input to the

neural network is a sequence consisting of 43 peptide-HLA

residues (9 from the peptide and 34 from the HLA), and as output

the corresponding binding affinity was used. The binding affinity

was log-transformed into the range between 0 and 1 as described

by[15]. The input sequences were presented to the neural network

in three distinct manners: a) conventional sparse encoding (i.e. is

encoded by 19 zeros and a one), b) Blosum encoding, where each

amino acid was encoded by the BLOSUM50 matrix score vector

[47], and c) a mixture of the two, where the peptide was sparse

encoded and the HLA pseudo sequence was Blosum encoded.

To estimate the predictive performance of the method, the

leave-one-out experiment was conducted as briefly described here.

Representing each HLA locus molecule, we trained a neural

network ensemble using all available data for the relevant locus,

Figure 3. HLA clustering from NetMHCpan predictions. The left hand panel shows the clustering for 36 representative HLA-A alleles, and the right
hand panel the clustering for 51 representatives HLA-B alleles. The trees are generated using the neighbor-joining algorithm from HLA distance
matrices as described in the text. The 12 common supertypes are highlighted in full line circles. The proposed novel (sub)-supertypes are highlighted
in dotted circles.
doi:10.1371/journal.pone.0000796.g003
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excluding all data specific for the HLA allele in question. The

network training was performed in a fivefold cross-validated

manner as describe above resulting in an ensembles of in total 15

neural networks. The predicted affinity was then determined as the

average of the 15 predictions in the neural network ensembles. In

this benchmark calculation, the data for the allelic molecule in

question was not involved in the training (and testing) of the

method, and the performance was thus truly an unbiased test

benchmark evaluation.

For the final NetMHCpan method, a conventional five-fold

cross-validated training was performed. The pool of unique

peptides was randomly split into five groups with all HLA binding

data for a given peptide placed in the same group (in this way, no

peptide can belong to more one group). The networks were

trained as described above adapting the three different sequences

encoding schemes, using 4/5 of the data to update the network

weights and 1/5 to determine when to terminate the training.

HLA distance trees
HLA distance trees were derived from correlations between

predicted binding affinities. For each antigen, the binding affinity

was predicted for a set of 10.000 random natural peptides using

the NetMHCpan method. Next, the distance between any two

alleles was defined, as D = 1-Pcorr, where Pcorr is the Pearson

correlation between two sets of predicted binding affinities. In this

measure, two molecules that share a similar binding specificity will

have a distance close to 0 whereas two molecules with unrelated

binding specificities would have a distance close to 1. The HLA

allele distance matrixes were calculated for 390 HLA-A alleles,

and for 711 HLA-B alleles , and used the neighbor algorithm from

the PHYLIP package, which implements the neighbor-joining

algorithm of Saitou and Nei [48] to generate a HLA allele distance

tree. To estimate the significance of the HLA distance tree, 100

such distance trees were generated using the bootstrap method

[38]. The set of input trees were summarized in the form of

a ‘‘greedy’’ consensus tree using proprietary software [49]. A

greedy consensus tree uses a majority rule consensus tree to which

all compatible bipartitions with frequencies below 50% have been

added in order of descending frequency [50].

In order to visualize the HLA distance tree, only a subset of the

leaves in the tree was displayed. The subset was selected in

a Hobohm 1 like manner, where the alleles were clustered at a 0.95

distance level, and only a single allele from each cluster selected for

display [51].

SUPPORTING INFORMATION

Table S1 Performance for the different alleles in terms of the

Pearsons correlation for the ‘‘leave-one-out’’ experiment. Predictors

of HLA-A and HLA-B locus molecules (without random negatives).

(A) shows the performance for the 24 HLA-A alleles, and (B) the

performance for the 18 HLA-B alleles. The first column gives the

allele name, the following columns the performance of the Pan, Self,

Neighbor, and Supertype methods, respectively, as explained in the

Figure 4. Definition of the HLA pseudo sequence. The upper part of the figure shows the residues of the HLA sequence estimated to be in contact
with the peptide in the binding cleft. The columns give the HLA residue numbering according the IMGT nomenclature. The rows demonstrate the
interactions with the nine peptides positions. Squares in grey outline the peptide positions estimated to have contact the corresponding HLA
residue. The lower part of the figure shows the amino acid polymorphism at each position in the pseudo sequence, both those that are common for
HLA-A and –B, and those that are unique for the HLA-A and HLA-B loci, respectively (as of February 2007).
doi:10.1371/journal.pone.0000796.g004
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text. After the Neighbor and Supertype performance values is

shown the neighbor allele name and supertype association,

respectively. Note, that the supertype performance is only stated

for the non-supertype representing alleles. The final column gives

the number of peptide data for each allele.

Found at: doi:10.1371/journal.pone.0000796.s001 (0.11 MB

DOC)

Table S2 Nearest neighbor identification for the 24 HLA-A and

18 HLA-B alleles. HLA-A and HLA-B allele nearest neighbor

identification. (A) gives the nearest neighbor identification for the

HLA-A alleles, (B) gives the nearest neighbor identification for the

HLA-B alleles. The first column gives the allele name, the second

column gives the Pan (leave-one-out pan-specific neural network)

performance in terms of the Pearson correlation coefficient. The

third and fourth columns give the allele name of the nearest

neighbor and distance as determined from alignment of the

pseudo sequences, the fifth column gives the predictive perfor-

mance of the Neighbor method in terms of the Pearson correlation

coefficient. Finally, the last column gives the number of data point

available for the neighbor allele.

Found at: doi:10.1371/journal.pone.0000796.s002 (0.08 MB

DOC)

Table S3 Sensitivity and specificity relations for the NetMHC-

pan method. The table displays the sensitivity and specificity

values at a classification threshold of 500 nM for the NetMHCpan

method as estimated from the cross validated predictive perfor-

mance for the 37,384 peptide data included in the benchmark data

set. The number of binding peptides is 9665.

Found at: doi:10.1371/journal.pone.0000796.s003 (0.04 MB

DOC)

Table S4 The source data. The number of peptide binding data

for each of the 24 HLA-A and 18 HLA-B molecules.

Found at: doi:10.1371/journal.pone.0000796.s004 (0.05 MB

DOC)
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  1 

Table S1. Performance for the different alleles in terms of the Pearsons 
correlation for the “leave-one-out” experiment.  
(A) Predictors of HLA-A locus molecules (without random negatives) 
  Pan Self Neighbor Supertype  N 

A0101 0.36 0.88 0.27 A1101  A1 1213 
A0201 0.84 0.90 0.81 A0206  A2 3876 
A0202 0.81 0.81 0.75 A0203 0.76 A2 1447 
A0203 0.87 0.89 0.80 A0202 0.81 A2 2046 
A0206 0.79 0.83 0.76 A0201 0.76 A2 2055 
A0211 0.60 0.26 0.49 A0201 0.49 A2 141 
A0212 0.85 0.67 0.74 A0201 0.74 A2 113 
A0216 0.72 0.46 0.56 A0201 0.56 A2 57 
A0219 0.71 0.52 0.56 A0212 0.65 A2 137 
A0301 0.77 0.84 0.77 A1101  A3 2488 
A1101 0.80 0.88 0.80 A0301 0.80 A3 2247 
A2301 0.74 0.76 0.73 A2402 0.73 A24 167 
A2402 0.79 0.84 0.75 A2301  A24 418 
A2403 0.82 0.84 0.81 A2402 0.81 A24 321 
A2601 0.48 0.80 0.25 A2602  A26 1032 
A2602 0.76 0.67 0.75 A2601 0.81 A26 76 
A2902 0.65 0.86 0.08 A3101 0.53 A3 160 
A3001 0.66 0.83 0.19 A3002 0.68 A3 931 
A3002 0.62 0.67 0.34 A3001 0.36 A1 92 
A3101 0.75 0.84 0.60 A3301 0.52 A3 2123 
A3301 0.65 0.75 0.56 A3101 0.08 A3 1140 
A6801 0.59 0.80 -0.04 A6802 0.28 A3 1141 
A6802 0.74 0.78 0.61 A6901 0.31 A2 1434 
A6901 0.75 0.83 0.70 A6802 0.63 A2 1648 

Ave 0.71 0.76 0.57      
Ave ex sup 0.73 0.73 0.57  0.59 Sum 26503 

        
(B) Predictors of HLA-B locus molecules (without random negatives) 

 Pan Self Neighbor Supertype N 

B0702 0.49 0.88 0.53 B0801  B7 1572 
B0801 0.64 0.75 0.53 B0802  B8 812 
B0802 0.65 0.87 0.77 B0801 0.77 B8 724 
B1501 0.49 0.83 0.37 B3501  B62 1284 
B1801 0.76 0.86 0.35 B3501 0.32 B62 290 
B2705 0.03 0.82 0.21 B4002  B27 1257 
B3501 0.68 0.78 0.61 B5301 0.32 B7 982 
B3901 0.50 0.61 0.21 B0801  B39 81 
B4001 0.53 0.82 0.59 B4002  B44 1257 
B4002 0.84 0.83 0.70 B4001 0.70 B44 118 
B4402 0.78 0.71 0.77 B4403 0.27 B44 119 
B4403 0.79 0.82 0.78 B4402 0.43 B44 119 
B4501 0.57 0.82 0.51 B4402 0.13 B44 114 
B5101 0.63 0.76 0.55 B5301 0.41 B7 244 
B5301 0.73 0.79 0.68 B3501 0.44 B7 254 
B5401 0.59 0.82 0.37 B0702 0.37 B7 255 
B5701 0.68 0.83 0.69 B5801 0.69 B58 59 



  2 

B5801 0.39 0.84 0.55 B5701  B58 1340 

Ave 0.60 0.80 0.54      

Ave ex sup 0.70 0.81 0.62  0.44 Sum 10881 

Predictors of HLA-A and HLA-B locus molecules (without random negatives). 
(A) shows the performance for the 24 HLA-A alleles, and (B) the performance 
for the 18 HLA-B alleles. The first column gives the allele name, the following 
columns the performance of the Pan, Self, Neighbor, and Supertype methods, 
respectively, as explained in the text. After the Neighbor and Supertype 
performance values is shown the neighbor allele name and supertype association, 
respectively. Note, that the supertype performance is only stated for the non-
supertype representing alleles. The final column gives the number of peptide 
data for each allele.  
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Table S2. Nearest neighbor identification for the 24 HLA-A and 18 HLA-B 
alleles.  

(A) HLA-A allele nearest neighbor identification 

Neighbor 
Allele Pan Allele Dist Perf N 

A0101 0.36 A1101 0.24 0.27 2247 
A0201 0.84 A0206 0.02 0.81 2055 
A0202 0.81 A0203 0.05 0.75 2046 
A0203 0.87 A0202 0.05 0.80 1447 
A0206 0.79 A0201 0.02 0.76 3876 
A0211 0.60 A0201 0.07 0.49 3876 
A0212 0.85 A0201 0.03 0.74 3876 
A0216 0.72 A0201 0.03 0.56 3876 
A0219 0.71 A0212 0.05 0.56 113 
A0301 0.77 A1101 0.11 0.77 2247 
A1101 0.80 A0301 0.11 0.80 2488 
A2301 0.74 A2402 0.03 0.73 418 
A2402 0.79 A2301 0.03 0.75 167 
A2403 0.82 A2402 0.05 0.81 418 
A2601 0.48 A2602 0.03 0.24 76 
A2602 0.76 A2601 0.03 0.75 1032 
A2902 0.65 A3101 0.18 0.08 2123 
A3001 0.68 A3002 0.15 0.19 92 
A3002 0.62 A3001 0.15 0.34 931 
A3101 0.75 A3301 0.08 0.60 1140 
A3301 0.65 A3101 0.08 0.56 2123 
A6801 0.59 A6802 0.11 -0.04 1434 
A6802 0.74 A6901 0.05 0.61 1648 
A6901 0.75 A6802 0.05 0.70 1434 

 
(B) HLA-B allele nearest neighbor identification 

  Neighbor  
Allele Pan Allele Dist Perf NN 

B0702 0.49 B0801 0.24 0.53 812 
B0801 0.64 B0802 0.07 0.53 724 
B0802 0.65 B0801 0.07 0.77 812 
B1501 0.49 B3501 0.19 0.36 982 
B1801 0.76 B3501 0.15 0.35 982 
B2705 0.03 B4002 0.31 0.21 118 
B3501 0.68 B5301 0.09 0.61 254 
B3901 0.50 B0801 0.21 0.21 812 
B4001 0.53 B4002 0.10 0.58 118 
B4002 0.84 B4001 0.10 0.70 1257 
B4402 0.78 B4403 0.05 0.77 119 
B4403 0.79 B4402 0.05 0.78 119 
B4501 0.57 B4402 0.23 0.50 119 
B5101 0.63 B5301 0.21 0.55 254 
B5301 0.73 B3501 0.09 0.68 982 
B5401 0.59 B0702 0.27 0.37 1572 
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B5701 0.68 B5801 0.07 0.69 1340 
B5801 0.39 B5701 0.07 0.55 59 
 
HLA-A and HLA-B allele nearest neighbor identification. (A) gives the nearest 
neighbor identification for the HLA-A alleles, (B) gives the nearest neighbor 
identification for the HLA-B alleles. The first column gives the allele name, the 
second column gives the Pan (leave-one-out pan-specific neural network) 
performance in terms of the Pearson correlation coefficient. The third and 
fourth columns give the allele name of the nearest neighbor and distance as 
determined from alignment of the pseudo sequences, the fifth column gives the 
predictive performance of the Neighbor method in terms of the Pearson 
correlation coefficient. Finally, the last column gives the number of data point 
available for the neighbor allele.   
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Table S3. Sensitivity and specificity relations for the NetMHCpan method.  
 
Sensitivity Specificity log50k nM 

0.50 0.99 0.58 94 
0.60 0.97 0.51 201 
0.70 0.96 0.45 384 
0.80 0.93 0.38 819 
0.90 0.85 0.27 2693 
0.95 0.76 0.18 7131 

 
The table displays the sensitivity and specificity values at a classification 
threshold of 500 nM for the NetMHCpan method as estimated from the cross 
validated predictive performance for the 37,384 peptide data included in the 
benchmark data set. The number of binding peptides is 9665.   
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Table S4. The source data.  
HLA-A # HLA-B # 
A0101 1213 B0702 1572 
A0201 3876 B0801 812 
A0202 1447 B0802 724 
A0203 2046 B1501 1284 
A0206 2055 B1801 290 
A0211 141 B2705 1257 
A0212 113 B3501 982 
A0216 57 B3901 81 
A0219 137 B4001 1257 
A0301 2488 B4002 118 
A1101 2247 B4402 119 
A2301 167 B4403 119 
A2402 418 B4501 114 
A2403 321 B5101 244 
A2601 1032 B5301 254 
A2602 76 B5401 255 
A2902 160 B5701 59 
A3001 931 B5801 1340 
A3002 92   
A3101 2123   
A3301 1140   
A6801 1141   
A6802 1434   
A6901 1648   
TOTAL 26503 TOTAL 10881 
The number of peptide binding data for each of the 24 HLA-A and 18 HLA-B 
molecules. 

 


