
CMG-bitools manual

Contents

1 VirtualBox and CMG-Biotools 3
1.1 Virtual computer setup . 3
1.2 Create a virtual computer on your local hard-drive. 3
1.3 Setting up a shared folder between the host and virtual computer 5

2 Introduction to Unix 6
2.1 Some useful concepts . 6
2.2 A brief overview of the command line shell . 6
2.3 Directories and the file system . 7
2.4 Working with files . 7
2.5 Reading the contents of text files . 8
2.6 Invoking executables . 9
2.7 Redirection and pipes . 9
2.8 File system permissions . 10

3 Introduction 11
3.1 Command syntax . 11
3.2 Example data . 11
3.3 GenBank files . 11
3.4 FASTA files . 11
3.5 for loops . 12

4 Download genomes 12
4.1 Re-name GenBank files from numbers to organism names . 13

5 Genome atlas 13

6 Extract DNA from GenBank 15

7 Calculate basic statistics 15

8 Identify rRNA sequences in DNA 16

1

9 Multiple sequence alignment of selected 16S rRNA sequences 17
9.1 Construct phylogenetic tree from 16S rRNA alignment. 18

10 Proteomes 18
10.1 Extract genes and proteins from GenBank . 18
10.2 Genefinding . 19

11 Amino acid and codon usage 19
11.1 Comparing amino acid and codon usage . 20

12 Protein BLAST matrix 21

13 Pan- and core-genomes 22
13.1 Pan- and core-genomes plot . 22
13.2 Extract subset genes from pan and core genome plot . 22
13.3 Gene frequency plot from a pan-core genome output . 24

14 Tips and Tricks 24
14.1 Remove FASTA entries with no sequence . 24
14.2 Modify names in BLAST matrix *.ps file . 24

14.2.1 HASH lines . 24
14.2.2 Bounding box . 25

14.3 Convert *.ps file to *.pdf . 25
14.4 Rename files . 25
14.5 Delete empty files . 26

2

1 VirtualBox and CMG-Biotools

• NOTE! It is possible to use the system on Note/Netbooks, but it is not recommended!

• NOTE! Your computer should have a minimum of 4 GB memory free!

• NOTE! If xubuntu at any point asks you to update, do NOT update xubuntu!

1.1 Virtual computer setup

You will install a program that will allow you to run this virtual computer. You will import a setup for the
computer, a so-called virtual hard-disk file, that will hold all the tools you will need for a basic comparative
genomics analysis.

1.2 Create a virtual computer on your local hard-drive.

• Download the program virtualbox from webpage (select the version that fits your computer):
http://www.virtualbox.org/wiki/Downloads.

• Install the program VirtualBox following the installation steps.

• Start the V irtualBox

• Click new (the blue icon on the left of the tool bar).

• Type CMG− biotools in the VM name dialog box

• Select linux (Operating system) and ubuntu (Version) in the Create New Virtual Machine dialog.

• Leave the Memory as default, if you are expecting to do very heavy computations set this as high as
allowed (within the green area of the bar)

• Create a new hard disk

• Leave virtual disk creation wizard settings unchanged: file type = VDI

• Set memory allocation as dynamic

• Click create in the Summary dialog

The virtual computer has now been created and can access part of the physical computer. The next step is
to read the disc image, this process is equivalent to inserting a CD into the physical computer.

• Download the latest version of CMG-biotools from the webpage:
http://www.cbs.dtu.dk/staff/dave/CMGtools/

• Click the Settings tab of the CMG-biotools computer

• Click the tab Storage

• Part of this window is dedicated to the Storage Tree in which there will be a branch called IDE
Controller Under this branch there should be a CD icon and the text Empty

• Select the Empty branch and click the CD icon to the right of the CD/DVD Drive(Figure 1(a))

• Click the “Choose a virtual CD/DVD disk file...” and find the folder where the CMG-biotools-version.iso
is stored

• Click OK

3

http://www.virtualbox.org/wiki/Downloads
http://www.cbs.dtu.dk/staff/dave/CMGtools/

The computer now knows which file to read when booting. Figure 1(b) shows how the computer is represented
in the VirtualBox window To open the computer, click the Start button. When given the option, select “live
- boot the Live System”. When the desktop appears, click the Install icon on the desktop and follow the
instructions. Create a user and a password that you can remember. Restart the computer when asked and
then you should be done.

(a) VirtualBox reading in the disc image (b) VirtualBox representation of
computer

(c) Booting operating system from
disc image

(d) CMG-biotools operat-
ing system desktop

Figure 1: Create a virtual computer on your local hard-drive using VirtualBox. Installing CMG-biotools on
the virtual computer.

4

1.3 Setting up a shared folder between the host and virtual computer

A shared folder allows the user to access files from the host system from inside the virtual system. In
this setup, files are shared over a network, in other words, you access remote files. For a virtual machine,
the network between host and guest is virtual since they are on the same real machine. In order to share
folders, Guest Additions must be installed. Guest Additions provide additional capability to a guest virtual
machine, including file sharing. A version of Guest Additions is already installed on CMG-biotools.

Prepare host

• Create a folder on your normal (host) system that you want to use as the share folder, do not use
default folders like Documents or Desktop. For the purpose of this tutorial the folder is named share

• When the virtual computer is turned off, go to the Settings tab and select Shared Folders.

• In the window you will se a Folders List with two lines, Machine Folders and Transient Folders. To
the right you should see a folder icon with a green plus sign (add folder). Click this icon

• Select your host folder in the Folder Path field

• Put a tick-mark in both Auto-mount and Make Permanent

• The folder shoukld now show up under Machine Folders

• Close the window and start the virtual computer

Prepare guest (CMG-biotools)

If the client is Linux, you have to mount and connect it to a directory. The following bash commands (in
the client) would setup a correct mount (and creates a link from your desktop) Note: you should not use
spaces in the share name. The shared folder on the CMG-biotools guest system is called Vboxshare. The
shared folder on the guest system, like we defined above, is called share You will need your password to set
up the shared folder.

1# User name is "student"
2sudo mkdir /home/student/Vboxshare
3sudo chmod 777 /home/student/Vboxshare
4sudo mount -t vboxsf -o uid=1000,gid =1000 share /home/student/Vboxshare
5ln -s /home/student/Vboxshare $HOME/Desktop/Vboxshare
6
7# NOTE: If you get the following error , change the vboxsf to vboxfs
8mount: unknown filesystem type 'vboxsf '

To not run the mount command every time you need the shared folder, put the command in the file
/etc/rc.local. Run the following command which will add the desired line at the rigth position in the
rc.local file, right after the line with the text “By default this script does nothing.”. That line is part of the
original rc.local file.

1# The following line should be typed on one single commandline
2# User name is "student" and shared folder is called "Vboxshare"
3sudo sed '/By default this script does nothing ./a sudo mount -t vboxsf -o uid =1000 ,gid =1000 share /home/

student/Vboxshare ' /etc/rc.local

Additional help: https://help.ubuntu.com/community/VirtualBox/SharedFolders

5

https://help.ubuntu.com/community/VirtualBox/SharedFolders

2 Introduction to Unix

This is a very simplified and rough introduction to using a terminal on a unix machine. The unix command
line interface is a very powerful environment and there is much more to it than described here.

2.1 Some useful concepts

This is a a brief overview of some useful concepts in unix.

• The Shell. Although Unix has a graphical interface called X Windows, it is often easier and quicker
to run programs by typing commands into a terminal window. Access to unix from other operating
systems is usually conducted through a terminal client e.g. Putty for windows.

• Users. All programs are run as a specific user, so you have to log into the system as that user with a
password.

• Files and processes. Everything is a file or a process and the input and output from files and
processes can be sent to each other (see pipes and redirection).

• Permissions. All files, directories and programs have access permissions. A user cannot see the
contents of a file or run a program unless the permissions allow.

2.2 A brief overview of the command line shell

This is what is run when you open a terminal window. It provides a lot of information and tools to help you
run programs.
The command prompt: When you open a terminal, the text at the bottom of the screen next to the cursor
will look something like this:

1interaction[maq]:/ home/projects/MicrobialGenomicsGroup >

This is useful because it tells you who you are and where you are. It can be configured in different ways
but the example above shows the machine, the username in square brackets ’[]’ and the current directory
after the colon ’:’.

• Command line history and auto-completion: Previously entered commands can be edited or exe-
cuted again using the up arrow key. Filenames can be auto-completed using the tab key.

• Environment variables: When you login to a machine or terminal, a set of variables, collectively
called the environment are created. These variables do things like telling the shell where to look for
programs. The printenv command will list all the environment variables. The list can be quite long.

1printenv SHELL # prints the executable for the current shell
2# Unix offers a selection of many shells all of which are subtly different
3printenv HOME # This command prints the location of the users home directory
4printenv PATH # The PATH variable is a list of directories which are searched when a command it typed
5# It is useful to add directories where executables are stored to the PATH variable

Getting help: Many unix commands have one or more manpages (manual page).

1man printenv # Use 'q' to exit the manpage

6

2.3 Directories and the file system

The shell logs you into a directory in the file system. There are some rules for about the file system.

• Files, directories and executables are case sensitive: This means that x.txt and X.txt

are two different files.

• Path delimiter: The unix shell uses the forward slash ’/’ to separate files and directories NOT
the backslash ’\’ like MsDOS. There are some special characters which are used when defining the
location of a file, directory or program.

• The root directory: The root directory is defined by the single slash ’/’ and represents to the first
node of the directory tree. It is similar to ’C:’ on a windows machine.

• The ’.’ directory: The ’.’ character is used to define the current directory when it is part of a
file path.

• The home directory: Most users are assigned a home directory where files can be created. This can
be referenced using the ’~’ character.

1# Examples: Absolute versus relative paths
2/usr/bin/perl # Absolute paths are defined from the root directory e.g.
3./ script.pl # Relative paths can be defined from the current directory e.g.
4~/ script.pl # Relative paths can be defined from the home directory e.g.

Here are some useful command to assist getting around the filesystem:

1pwd # prints the current , or "working" directory
2cd /usr/bin # changes the current working directory to a new location
3mkdir newdir # creates a new directory
4rmdir newdir # removes a directory (directory must be empty)

2.4 Working with files

Files reside in directories and can contain text or binary information. Files can be created, copied, moved,
renamed and deleted with the following commands.

• ls: lists the contents of directories. Run just as ’ls’ the command lists all the contents without any
other information. More information can be gained by supplying some arguments.

1ls -l # list showing permissions , user , group. size , modification date and filename
2ls -lh # as above but file sizes are printed in human readable form
3ls -lhS # as above but sort the results by file size in descending order
4ls -lhSr # as above but in ascending order
5ls -lR # list the contents of all directories recursively from the current directory
6ls -lt # list files in ascending order of last modified
7ls -ltr # as above but in descending order

• touch: used with a filename. If the file does not already exist, a new one is created. Otherwise the
date of the file is changed to the current time.

1touch filename

7

• cp: copies filename1 to filename2 or into a directory and leaves the original file untouched. It can also
be used to copy directories.

1cp original_file new_file
2cp file directory/
3cp -r directory new_directory

• mv: moves a file from one to another and deletes the original file. It is used for renaming files. It can
also be used to recursively move directories.

1mv original_file new_file
2mv file directory/
3mv dir1 dir2

• rm: deletes a file, can also be used to delete a directory and the contents. use with care.

1rm file
2rm -r dir

• File name advice: It is best not to use spaces or special characters such as “ ’ < > @ in filenames.
Underscores ’_’ and hypens ’-’ are fine.

2.5 Reading the contents of text files

The contents of text files (but not binary files) can be read quite easily through the terminal.

• cat: appends the contents of one file into another

1cat file1 file2

• more: shows the contents of a text file. Press ’q’ to return to prompt

1more filename

• less: better than more because the up and down keys can be used to scroll up and down.

1# Some useful key commands are:
2# space: scroll forward one screen
3# b: scroll backward one screen
4# g: scroll to the top of the file
5# G: scroll to the end of the file
6# q: quit to the prompt

• /text: searches the file for the word “text”

1less filename

• head: shows the first few lines of the given file(s). A hyphen and number can be passed to determine
how much of the file is shown

1head filename
2head -5 filename

• tail: shows the last few lines of the given file(s). A hyphen and number can be passed to determine
how much of the file is shown

8

1tail filename
2tail -5 filename

• grep: Searches through text files for a search term and print matching lines. grep is a complex
command and has many options. Try looking at the manual page for grep (man grep).

1grep searchword file1 file2 # to search two files for a searchword
2grep -v searchterm file1 file2 # to search two files to print lines excluding a searchword
3grep -c searchterm file1 file2 # To count the number of matches per file

• wc: counts the number of words or lines a file contains

1wc -w file.txt # print the wordcount of a file
2wc -l file.txt # print the line count of a file

• wildcards: A number of characters are interpreted by the Unix shell before any other action takes
place. These characters are known as wildcard characters. Usually these characters are used in place
of filenames or directory names.

1* # An asterisk matches any number of characters in a filename , including none
2? # The question mark matches any single character
3[] # Brackets enclose a set of characters , any one of which may match a single character
4- # A hyphen used within [] denotes a range of characters.
5~ # A tilde at the beginning of a word expands to the home directory
6# If another user name is appended to the character , it refers to that user 's home directory

Here are some examples:

1cat c* # Displays any file whose name begins with c including the file c, if it exists.
2ls *.c # Lists all files that have a .c extension.
3cp ../rmt?. # Copies files in parent directory to working directory if file matches:
4# four characters long and begins with rmt.
5ls rmt [34567] # Lists every file that begins with rmt and has a 3, 4, 5, 6, or 7 at the end.
6ls rmt[3-7] # Does exactly the same thing as the previous example.
7ls ~ # Lists your home directory.
8ls ~hessen # Lists the home directory of the guy1 with the user id hessen.

2.6 Invoking executables

Some files can be marked as executable which means they can run as programs and perform tasks. Exe-
cutables residing in the PATH directories can be invoked without including the path to the executable. If a
program called perl is found in the folder /usr/bin and the folder /usr/bin is part of PATH, the program
can be called without giving the absolute or relative path to the program. Non-PATH program must be called
giving an absolute or relative path.

1perl myscript.pl # Program found in PATH
2/usr/bin/perl myscript.pl # Non -PATH program

2.7 Redirection and pipes

Most unix processes write their output to the standard output (the terminal screen) and take their input
from standard input (they keyboard). There is also a standard error which is usually printed to the terminal

9

screen. These inputs and outputs can be redirected to files. The standard output can be redirected using
the ’>’ character

1ls -l > list.txt # Appending to a file
2echo 'hello ' >> list.txt # Redirecting input
3sort < filewithdata.txt # Sorts lines in file
4sort < input.txt > output.txt # Both at the same time

Pipes (’|’) allow processes to direct output directly to other programs. Pipes can be put together to allow
complex “pipelines” of commands to be put together. The output of command 1 can be passed to command
2 as follows:

1ls -1 | grep -v '*.txt ' | grep -c '*.coli*'

This pipeline will first list the filenames in a directory, then exclude (grep -v) the once with the file extension
(.txt) and then count (grep -c) the once with he extension (.coli).

2.8 File system permissions

File system permissions ensure that file contents or executables can only be examined or invoked by users
with the correct authorization. They can often also be a source of problems when using data or programs
created by others where you can’t access a file or directory due to the permissions set. To view permissions
type ’ls -l’ in a directory containing some files, the output will look like this:

1-rw-r----- 1 user1 cdrom 11802 Jul 9 10:02 file.txt

The 10 character string ’-rw-r––-’ describes the permissions. The hyphen indicates that the permission
has not been granted and ’r’ indicates read permission, ’w’ indicates write and ’x’ indicates that the file
can be executed. There are three sets of ’r’,’w’,’x’ or ’-’ to control access by the user to whom the file
belongs, members of the same group and anyone else. e.g. ’-rwxrwxrwx’ means anyone can read, write and
execute the file

1whoami # will display your username
2groups # will display the groups you are a member of
3chmod # file permissions can be changed using the chmod command

The chmod command takes a complex set of arguments. The user, group or other are represented by ’u’,

’g’ and ’o’. The letter ’a’ is used to represent all whether permissions are granted or revoked is determined
using ’+’ or ’-’ respectively read, write or execute permissions are represented by ’r’, ’w’ and ’x’.

1chmod go -wx data.txt # remove write and execute permissions for the group and others try
2chmod a+rw data.txt # to give everyone read and write permissions

Useful pages with Unix introductions include: http://www.ee.surrey.ac.uk/Teaching/Unix/

10

http://www.ee.surrey.ac.uk/Teaching/Unix/

3 Introduction

3.1 Command syntax

Below is seen an example of how commands will be shown in these exercises. The example task is how
to create a folder, GenBankDNA. Whenever a word is marked with <> it indicates that a word should be
inserted here WITHOUT the <> signs. Below is shown the syntax that will be used in this document and
what the command should look like when used.

1syntax command: mkdir <directory_name >
2typed command: mkdir GenBankDNA

3.2 Example data

To illustrate the different steps in this manual, a folder with example data is included in the CMG-
biotools. The folder is called VeillonellaExample.tar.gz and is a compressed archive. Go to the folder
/usr/bitools/ and click the VeillonellaExample.tar.gz file. An application will open, called Archive
Manager. Click the option Extract files from archive, and then select where the files should be extracted/-
stored. The package holds GenBank, DNA FASTA, protein FASTA, RNA FASTA, codon and amino acid
usage and genome atlas for a set of genomes from the genus Veillonella.

3.3 GenBank files

Locate the example GenBank files and investigate the content. Open the file in a text-editor (CMG-biotools
has a text-editor called mousepad and another called gedit).

1mousepad <name >.gbk
2gedit <name >.gbk

In the beginning of the file is the metadata, names, publications, habitat and similar information. The next
part is the annotations, genes and CDS (CoDing Sequences). In this section the genes are described by their
location, direction, note, and translation.

3.4 FASTA files

Look at the FASTA formatted files created by Prodigal (use head, tail, cat, less or the texteditor). The
wiki entry about FASTA says:

" In bioinformatics, FASTA format is a text-based format for representing either nucleotide sequences

or peptide sequences, in which base pairs or amino acids are represented using single-letter codes. The

format also allows for sequence names and comments to precede the sequences. The format originates

from the FASTA software package, but has now become a standard in the field of bioinformatics. http:

//en.wikipedia.org/wiki/FASTA_format "

Underneath here is shown an example of a FASTA file, with a description header and an amino acid sequence.
The sequence lines within a FASTA entry (header + sequence) make up the entire sequence of a gene.

11

http://en.wikipedia.org/wiki/FASTA_format
http://en.wikipedia.org/wiki/FASTA_format

1>SEQUENCE_1
2MTEITAAMVKELRESTGAGMMDCKNALSETNGDFDKAVQLLREKGLGKAAKKADRLAAEG
3LVSVKVSDDFTIAAMRPSYLSYEDLDMTFVENEYKALVAELEKENEERRRLKDPNKPEHK
4IPQFASRKQLSDAILKEAEEKIKEELKAQGKPEKIWDNIIPGKMNSFIADNSQLDSKLTL
5MGQFYVMDDKKTVEQVIAEKEKEFGGKIKIVEFICFEVGEGLEKKTEDFAAEVAAQL
6>SEQUENCE_2
7SATVSEINSETDFVAKNDQFIALTKDTTAHIQSNSLQSVEELHSSTINGVKFEEYLKSQI
8ATIGENLVVRRFATLKAGANGVVNGYIHTNGRVGVVIAAACDSAEVASKSRDLLRQICMH

From this point forward that the number of genes/proteins is equivalent to the number of headers. As such,
counting the number of annotated genes in a GenBank file, can be done by counting the number of ’>’ signs
in the corresponding FASTA file. A simple Unix tool for finding sequence patterns in a file is the program
grep. Here we will use grep to count how many times the ’>’ sign is found in a given FASTA file. It is
important to remember the " signs, otherwise the sign will be viewed as a output redirect. grep will only
find the line, with the search-pattern. To count the number of times the pattern is found grep has a -c

option, which will print the number on the screen.

1grep ">" <name >.orf.fsa
2grep -c ">" <name >.orf.fsa

3.5 for loops

When working with comparative genomics, it is often necessary to run the same analysis on multiple files.
This can be done by constructing loops using the program for. A for loop will perform the same command
on all files in a list. Take some time to play with these loops before you go into advances things, as you
might accidentally overwrite your file or similar. To wrap the grep command from above it is necessary to
add an extra command that will show the filename (which is the organism name). The command is called
echo. The for loop will look like this:

1for x in <name1 > <name2 > <name3 > <name4 >
2do
3echo $x
4grep -c ">" <name >.orf.fsa
5done

The following will allow you to run a command on all files with the extension .orf.fsa without specifying
the names of the files. The counts will be written to the screen along with the name of the file.

1for x in *orf.fsa;
2do
3echo $x
4grep -c ">" $x
5done

4 Download genomes

Obtaining genome data (metadata, DNA and annotations) is not a straight forward process. This is largely
due to the reliance on public databases that get updated and modified over time. The analysis presented

12

here works on unpublished data as long as the file formats are as required. Bellow is shown a procedure for
downloading genome data from the National Center for Biotechnology Information database (NCBI).
The BioProject database of NCBI (http://www.ncbi.nlm.nih.gov/genome/browse/) allows the user to
browse genome projects based on organism, status, or other attributes. From this list it is possible to obtain
so-called International Nucleotide Sequence Database Collaboration (INSDC) and Whole Genome Sequence
(WGS) numbers. These numbers can be used as input to the program textttgetgbk that downloads the
corresponding genome data as GenBank file formats. The WGO numbers are a little tricky because the refer
to a large number of data entries, all connected to one genome project. In order to get the records for the
entire project the WGS number must be modified slightly, see the example bollow.

1Organism name WGS
2Mycobacterium avium subsp. paratuberculosis S397 AFIF01
3Mycobacterium avium subsp. paratuberculosis Pt139 AFPC01
4Mycobacterium avium subsp. paratuberculosis Pt144 AFPD01

The root of the WGS number is the first 4 characters (AFIF, AFPC and AFPD). In order to access the entire
project, remove the ’01’ and add ’00000000’. The resulting numbers have 12 characters (AFIF00000000,
AFPC00000000 and AFPD00000000). The output from the program is a GenBank file equivalent to the files
found on the webpage. The program option is -a which reads the input as an NCBI INSDC or WGS number.
The syntax of the program is shown below. Note the Unix usage of the ’>’ sign, which is a redirection of
the output into a file. If this is not included (getgbk -a <INSDC>), the program will write the output, the
GenBank file, to the screen.

1getgbk -a <INSDC > > <INSDC >.gbk
2getgbk -a <modifiedWGS > > <modifiedWGS >.gbk

4.1 Re-name GenBank files from numbers to organism names

To make it easier to recognize files, they will now be renamed so they are called an organism name instead
of a GPID number. From this point on, <INSDC> will be replaced with <name> and will refer to the organism
name the file is given.

1extractname <INSDC >.gbk

Note that the files are not moved, but rather, they are copied into a new file. Delete the numbered files using
the command ’rm’. The new files will from here on be referred to as <name>.gbk in the command syntax.

5 Genome atlas

A genome atlas is a visual representation of genome properties, genes/proteins and patterns in DNA asso-
ciated with DNA structures, helix, repeats and so on. A genome atlas is made from a GenBank file and
requires a continuos piece of DNA. It is important to have only one replicon in your GenBank file (count
number of LOCUS if you are not sure). The program is made to only run for one DNA string, a decission
made because of the nature of the figure. Creating a circular atlas for a in-complete genome would not make
biological sense. If you do wish to construct a atlas for a multi-contig genome, it is possible to “glue” the

13

http://www.ncbi.nlm.nih.gov/genome/browse/

DNA strings together with in a FASTAA file. In order to construct an atlas, the DNA sequence is scanned
for all kinds of patterns. This means that it takes time to prepare the files necessary for a genome atlas.

1mkdir GenomeAtlas <acc > # Create folder to hold the files for the genome atlas
2cp <name >.gbk GenomeAtlas <acc >
3cd GenomeAtlas <acc > # Enter the atlas specific folder
4
5# Replace the pattern 'XXXX ' with the name/acc in the file called 'genomeAtlas '
6sed s/XXXX/<name >/g /usr/biotools/genomeAtlas > <name >. genomeatlas.sh
7
8# Example
9# In the current working directory you have a file called A_sp_SE50_ID_CP003170.gbk
10sed s/XXXX/A_sp_SE50_ID_CP003170/g /usr/biotools/genomeAtlas > A_sp_SE50_ID_CP003170.genomeatlas.sh
11
12# NOTE: it is possible to make a atlas from local genefinding or published proteomes ,
13# but it is not possible to make an atlas for a whole genome sequence
14
15chmod +x <name >. genomeatlas.sh # Make file executable
16./<name >. genomeatlas.sh # Execute file

The following example shows how to create six atlases for six different genomes with prodigalrunner

annotations. The pipeline is the same for a normal GenBank file with published annotations. The pipeline
runs in two steps, first it create a folder per atlas and then copies the relevant GenBank file into that folder.
Next, it create the .genomeatlas.sh file and executes it.

1for x in A_fermentans_DSM_20731_ID_CP001859_prodigal A_intestini_RyC -MR95_ID_CP003058_prodigal
M_hypermegale_ART12_1_ID_FP929048_prodigal M_elsdenii_DSM_20460_ID_HE576794_prodigal
S_sputigena_ATCC_35185_ID_CP002637_prodigal V_parvula_DSM_2008_ID_CP001820_prodigal

2do
3mkdir GenomeAtlas_$x
4cp $x.gbk GenomeAtlas_$x
5done
6
7for x in A_fermentans_DSM_20731_ID_CP001859_prodigal A_intestini_RyC -MR95_ID_CP003058_prodigal

M_hypermegale_ART12_1_ID_FP929048_prodigal M_elsdenii_DSM_20460_ID_HE576794_prodigal
S_sputigena_ATCC_35185_ID_CP002637_prodigal V_parvula_DSM_2008_ID_CP001820_prodigal

8do
9cd GenomeAtlas_$x
10sed s/XXXX/$x/g /usr/biotools/genomeAtlas > $x.genomeatlas.sh
11chmod +x $x.genomeatlas.sh
12./$x.genomeatlas.sh
13cd ..
14done

To do a zoom of a specific region, open the file called <name>.genomeatlas.cf and add the line described
bellow. Note that this procedure should be run in the same directory as the not-zoomed atlas, as it uses the
same files.

1mousepad <name >. genomeatlas.cf # Open genome atlas file
2circlesection <start > <end >; # Syntax
3circlesection 515000 535000; # Example
4circletics auto; # This line should be added under the line that looks like this
5<name >.zoom.genomeatlas.cf # Save the file with new name
6genewiz -p <name >.zoom.genomeatlas.ps <name >.zoom.genomeatlas.cf # Now re-run the atlas picture

14

6 Extract DNA from GenBank

The GenBank file format contains raw DNA sequence for a given genome project. Here the DNA will be
extracted and searched for patterns similar to rRNA sequences. The extraction of DNA from GenBank
could in theory be done manually, but there are much faster ways. Here it is done using a small extraction
program called saco_convert which takes a GenBank file as input and stores the DNA in a FASTA format.

1saco_convert -I genbank -O fasta <name >.gbk > <name >.fna
2
3# The above can be wrapped in for -loop to make it faster
4for x in *gbk
5do
6saco_convert -I genbank -O fasta $x > $x.fna
7done

Look at the file and make sure that it contains DNA in FASTA format (use head, tail, cat, less or the
text-editor). Number of ’>’ FASTA headers should be equal to the number of replicons (chromosomes or
plasmids). Count the number of replicons using grep:

1grep -c '>' <name >.fna
2
3# The above can be wrapped in for -loop to make it faster
4for x in *fna
5do
6echo $x >> proteinCounts.txt
7grep -c ">" $x >> proteinCounts.txt
8done

If you need to run this loop again, delete the proteinCounts.txt file first.

7 Calculate basic statistics

The next part is an analysis performed on a FASTA formatted file containing complete genomic DNA
(<name.fna>), not genes or proteins (<name> proteins.fsa). Calculate the AT content (Per.AT), num-
ber of replicons (ContigCount), deviation of AT across replicons (StDevAT), percentage of unknown bases
(Per.Unknowns) and total size in bp (TotalBases).

1genomeStatistics <name >.fna

Output is by default written to the screen. You can copy the output from the screen window into a spread-
sheet. The command line can be used in a for loop, but the amount of data written to the screen might be
overwhelming. In that case the result can be redirected to an output file.

1for x in *fna
2do
3genomeStatistics $x >> genomeStats.all
4done

Note the ’> >’ signs, this means “append” instead of redirect. When using redirect, ’>’, a file is created
if not already found or overwritten if already found. When appending, the output is added if the file is not
found or appended if the file is already found. Copy the genome statistics into a spreadsheet (gnumeric).

15

Bellow is shown an example of a genomeStats.all file for three genomes. It is seen that the complete
genome of Actinoplanes consists of 1 contig and as such, the largest sequence is 100% of the total DNA. For
the remaining genomes, the data consist of 1146 and 176 contigs with very small sequences, 1 and 2.8% of
the total DNA content.

1Filename TotalBases: Per.AT: StDevAT: ContigCount: Per.Unknowns: Per.LargestSeq
2A_sp_SE50_ID_CP003170.fna 9239851 28.6828 0.0 1 0 100.0
3Filename TotalBases: Per.AT: StDevAT: ContigCount: Per.Unknowns: Per.LargestSeq
4M_avium_ID_AFNS00000000.fna 4610244 31.0383 0.0255 1146 0 1.0841
5Filename TotalBases: Per.AT: StDevAT: ContigCount: Per.Unknowns: Per.LargestSeq
6M_avium_ID_AFIF00000000.fna 4813711 30.6866 0.0269 176 0 2.8546

8 Identify rRNA sequences in DNA

For identifying rRNA sequences in DNA we will use rnammer, a program that implements an algorithm
designed to find rRNA sequences in DNA 1. The program was made by modeling a large number of known
rRNA sequences and making them into generalized patterns. These patterns are then used as search models
in a new DNA sequence. If a part of the DNA matches the model, the sequence is extracted as a likely rRNA
sequence. The help page for rnammer has the following description for the program:

" RNAmmer predicts ribosomal RNA genes in full genome sequences by utilising two levels of Hidden Markov
Models: An initial spotter model searches both strands. The spotter model is constructed from highly conserved
loci within a structural alignment of known rRNA sequences. Once the spotter model detects an approximate
position of a gene, flanking regions are extracted and parsed to the full model which matches the entire gene. By
enabling a two-level approach it is avoided to run a full model through an entire genome sequence allowing faster
predictions.

RNAmmer consists of two components: A core Perl program, ’core-rnammer’, and a wrapper, ’rnammer’. The
wrapper sets up the search by writing on or more temporary configuration(s). The wrapper requires the super
kingdom of the input sequence (bacterial, archaeal, or eukaryotic) and the molecule type (5/8, 16/17s, and 23/28s)
to search for. When the configuration files are written, they are parsed in parallel to individual instances of the core
program. Each instance of the core program will in parallel search both strands, so a maximum of 3x2 hmmsearch
processes will run simultaneously. The input sequences are read from sequence and must be in Pearson FASTA
format. "

The program is run as follows, specifying the taxonomical kingdom (bac) and the type of molecules to search
for (tsu for 5/8s rRNA, ssu for 16/18s rRNA, lsu for 23/28s rRNA). The parameter -f specifies the name
of the output file.

1rnammer -S bac -m ssu -f <name >.rrna.fsa <name >.fna

Wrapping all your genomes in a single for loop for rnammer might, therefore, not a good idea. Make 2-3
loops and wait for each of them to finish before you start the next one.

1# Loop for running a list of files
2for x in <name1 > <name2 > <name3 > <name4 >
3do
4rnammer -S bac -m ssu -f $x.rrna.fna $x.fna
5done

1Lagesen, K. et al. (2007). RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research

16

6
7# Loop for running all files in directory with extension *fna
8for x in *fna
9do
10rnammer -S bac -m ssu -f $x.rrna $x
11done

9 Multiple sequence alignment of selected 16S rRNA sequences

The way of comparing the 16 sRNA sequences is to do a multiple sequence alignment. CMG-biotools comes
with the alignment program clustal. The greater the distance between two sequences the greater the
difference between the organisms from which the sequences came. The rnammer program finds all possible
rRNA sequences in a genome. Some, and indeed many, genomes have more than one copy of this gene. In
order to do a 16S rRNA tree you should pick one of these sequences. Here we choose the one that has the
highest score according to the rnammer models. The program extractseqs takes all files in a directory name
<something>.rrna.fsa and selects the best sequence within each file (each organism). For some organisms,
rnammer might not find a sequence with a good enough score. This means that the model does not find
a sequence that looks sufficiently like a rRNA sequence. These sequences, and organisms, will be excluded
from the analysis.
The sequences will now be evaluated based on fixed criteria for a 16S rRNA sequence. These criteria include
length and fitness score to the rnammer models. This extraction procedure will only work for 16s rRNA
sequences that fulfill the criteria.

1extractseqs all.rrna # The code works on all files in the current working directory

The output is a FASTA formatted file with rRNA genes in DNA code. Count the number of sequences in
this FASTA file (using grep). Try using grep without the -c option and look at what the headers of this
FASTA file looks like. Look at the header lines for the selected sequences. The alignment is performed
using clustalw and the file holding one rRNA sequence from each organism. Here we use the commandline
version of clustal but the graphical version is also installed, clustalx.

1clustalw all.rrna

Next we create a distance tree for the alignment, using a bootstrap value of 1000. Wiki about bootstrapping
in statistics:

" In statistics, bootstrapping is a computer-based method for assigning measures of accuracy to sample estimates
(Efron and Tibshirani 1994). This technique allows estimation of the sample distribution of almost any statistic
using only very simple methods (Varian 2005). Generally, it falls in the broader class of resampling methods.
Bootstrapping is the practice of estimating properties of an estimator (such as its variance) by measuring those
properties when sampling from an approximating distribution. One standard choice for an approximating distri-
bution is the empirical distribution of the observed data. In the case where a set of observations can be assumed
to be from an independent and identically distributed population, this can be implemented by constructing a
number of resamples of the observed dataset (and of equal size to the observed dataset), each of which is obtained
by random sampling with replacement from the original dataset. "

17

When using bootstrapping, different versions of the distance tree will be constructed and each time a branch-
ing point will be recorded. With a bootstrap value of 1000, the number on the tree will indicate how many,
out of 1000 trees, have this branching. The closer to 1000 the more sure we are of that branch.

1clustalw all.rrna -outputtree=nexus -bootstrap

Output is two different files, *phb and *treb.

9.1 Construct phylogenetic tree from 16S rRNA alignment.

The tree construction is simply a drawing program called njplot. Open the bootstrap tree file *.phb and
tick the Display setting by clicking Bootstrap values.

1njplot all.phb

Try to change the settings for the tree, rooted/unrooted and so on.

10 Proteomes

Constructing a proteome for a given genome project is often done by the people who have published the
genome. It is therefore possible to use the published proteomes or do a local genefinding. How you choose to
select your data is up to you. You can use published proteomes where they exist and combine with locally
calculated proteomes where published once are not available. You can also choose to run local genefinding
on all the data and disregard the published proteomes.

10.1 Extract genes and proteins from GenBank

This procedure extracts translated genes from GenBank files in the case where these have been annotated
by the publisher of the genomes. To extract annotated proteins from GenBank files, use the following loop.
NOTE, some genome project do not have annotated proteins but might still have DNA sequence.

1for x in *gbk
2do
3echo $x
4gbkExtract $x
5done

The output files are automatically generated and are called <name>.gbk.fsa (amino acids) and <name>.gbk.fna
(nucleotides). As seen from the examples bellow, some GenBank files have DNA sequences but no proteins.
It is also seen that unfinished genomes can also have published annotations.

1# Counting number of FASTA headers in DNA FASTA files
2grep -c ">" *fna
3Actinoplanes_sp_SE50_110_ID_CP003170.fna : 1
4Mycobacterium_avium_subsp_paratuberculosis_CLIJ361_ID_AFNS00000000.fna : 1146
5Mycobacterium_avium_subsp_paratuberculosis_S397_ID_AFIF00000000.fna : 176
6
7# Counting number of FASTA headers in protein FASTA files
8grep -c ">" *fsa
9Actinoplanes_sp_SE50_110_ID_CP003170.gbk.proteins.fsa : 8247

18

10Mycobacterium_avium_subsp_paratuberculosis_CLIJ361_ID_AFNS00000000.gbk.proteins.fsa : 0
11Mycobacterium_avium_subsp_paratuberculosis_S397_ID_AFIF00000000.gbk.proteins.fsa : 4619

10.2 Genefinding

Now we will run our own genefinding algorithm on the DNA sequence of the genome. This is very often the
same that the publishers of the genome has done. The good thing about running one algorithm on all the
genomes is that the results will be standardized which is not the case with published annotations.

1prodigalrunner <name >.fna
2
3for x in *fna
4do
5prodigalrunner $x
6done

Output files include:

1<name >.gff # Raw prodigal output
2<name >_prodigal.orf.fsa # Protein file in FASTA format
3<name >_prodigal.orf.fna # Gene file in FASTA format
4<name >_prodigal.gbk # Draft GenBank file

11 Amino acid and codon usage

These basic statistics for each genome are visualized in a PDF summery with three plots and a text summery.
The calculations have been implemented in a program called basicgenomeanalysis and takes gene FASTA
files as input. The FASTA file can be obtained from GenBank extraction or genefinding. Output is four
PDF files with visual representations of codon and amino acid usage along with base bias in third codon
position. The file named *all.pdf is a A4 representation of all the figures combined. Along with the PDF
is created a text file with the numbers used to draw the figures (see example bellow).

1basicgenomeanalysis <name >.orf.fna /usr/bin/gnuplot
2
3# Example run
4basicgenomeanalysis Actinoplanes_sp_SE50_110_ID_CP003170_prodigal.orf.fna /usr/bin/gnuplot
5#===== Roseplot of Codon Usage finished/attempted
6#===== Roseplot of Amino acid usage finished/attempted
7#===== Bias in third position plot , Gnuplot
8#===== Made pdf from ps files
9[1] Wrote 1 pages , 190972 bytes
10
11# Output textfile (first and alst 5 lines)
12head -n 5 Actinoplanes_sp_SE50_110_ID_CP003170_prodigal.fna.CodonAaUsage
13Actinoplanes_sp_SE50_110_ID_CP003170_prodigal.orf.fna TotalBases: 8189487 PerAT: 28.23 StDevAT: 0.04
14codon AAA 0.26687 7285
15codon CAA 0.18463 5040
16codon GAA 0.75983 20742
17codon TAA 0.01960 535
18tail -n 5 Actinoplanes_sp_SE50_110_ID_CP003170_prodigal.fna.CodonAaUsage
19aa S 4.8983

19

20aa T 6.4059
21aa M 1.5833
22aa C 0.7422
23aa P 6.1556

For fast viewing of PDF and PS (post script) files you can either double click the file in the file browser
window or use the commandline tool ghostview.

11.1 Comparing amino acid and codon usage

Comparing the amino acid and codon usage between many genomes also usually involves clustering genomes
with similar usage. It was therefor found useful to compare these numbers using a so-called heatmap
constructed in R (The R Project for Statistical Computing).
First we prepare the data from the *CodonAaUsage files and collect them into one file. You can of course
choose to only include some of your file if you wish to do a smaller comparison.

1grep aa *CodonAaUsage > aaUsage.all
2grep Total *CodonAaUsage > statistics.all
3cut -f2 ,3,4,5,6,7,8 statistics.all > tmp.all
4mv tmp.all statistics.all
5grep codon *CodonAaUsage > codonUsage.all

Install the gplots package:

1install.packages("gplots")

Drawing heatmaps of bias in third codon position and amino acid and codon usage

1library(gplots)
2codon <- read.table("codonUsage.all")
3colnames(codon) <- c('Name ', 'codon ', 'score ', 'count ')
4codon <- codon [1:3]
5test <- reshape(codon , idvar="Name", timevar="codon", direction="wide")
6codonMatrix <- data.matrix(test [2: length(test)])
7rownames(codonMatrix) <- test$Name
8
9# R allows you to run one long command like the following
10codon_heatmap <- heatmap .2(codonMatrix , scale="none", main="Codon usage",
11xlab="Codon fraction", ylab="Organism", trace="none", margins=c(8, 25)) # Command finished
12
13dev.print(postscript , "codonUsage.ps", width = 25, height =25)
14dev.off()

1library(gplots)
2aa <- read.table("aaUsage.all")
3colnames(aa) <- c('Name ', 'aa ', 'score ')
4test <- reshape(aa , idvar="Name", timevar="aa", direction="wide")
5aaMatrix <- data.matrix(test [2: length(test)])
6rownames(aaMatrix) <- test$Name
7
8# R allows you to run one long command like the following
9stat_heatmap <- heatmap .2(aaMatrix , scale="none", main="Amino acid usage", xlab="Amino acid fraction",
10ylab="Organism", trace="none", margins=c(8, 25), col = cm.colors (256)) # Command finished
11
12dev.print(postscript , "aaUsage.ps", width = 25, height =25)
13dev.off()

20

12 Protein BLAST matrix

A BLAST matrix is a comparison of proteomes (proteins from a genome) used to estimate how many proteins
is found in common between two genomes. We will construct a matrix from the protein FASTA files created
by prodigal or extracted from GenBank. The BLAST matrix algorithm has been implemented in a program
called blastmatrix. First we will construct an input file for this program. The input file must be of the
format XML which is a nice computer-reading format but not very friendly to human eyes. A small program
called makebmdest construct a XML file from all the protein FASTA files in a directory. Make sure that you
have the right files in the current working directory.

1# Create BLAST matrix XML file from the protein FASTA files within the current working directory
2# NOTE: files MUST have the extension *fsa
3
4makebmdest . > matrix.xml

The ’.’ indicates that the path to the files is the path to the current working directory. If this dot is not
included the code will create a XML file with no references to the actual protein files. the BLAST matrix is
then generated using the blastmatrix program with the file matrix.xml as input.

1blastmatrix matrix.xml > matrix.ps

While the matrix is running you will encounter an error message about a MySQL database. This error is
related to the original usage of the script, where a CBS database was searched to see if the calculation had
been made before. Because the biotools-xubuntu system does not have a common database the program
complains that it can not find it.
Error messages related to illegal division by zero can be due to faulty genefinding (prodigal). In some
cases, the genefinder will locate a gene but then afterwards not include that gene for other reasons. This
will cause the program to make a header for a gene but no sequence. If you encounter this problem, run the
following commands in the directory where you have the amino acid FASTA files.

1for x in *. proteins.fsa
2do saco_convert -I Fasta -O tab $x > $x.tab
3sed -r '/\t\t\t/d' $x.tab > $x.temp.tab
4saco_convert -I tab -O Fasta $x.temp.tab > $x
5rm *tab
6end

13 Pan- and core-genomes

Amethod of comparing genomes looks at the cumulative set of all genes, shared across genomes (pan-genome)
and the conserved set of gene families across all genomes (core-genome). The pan- and core-genomes are
theoretical representations of a collective protein pool and a conserved protein pool, respectively. When a
protein type is found in all genomes in a collection, it is called a core gene of this collection. Here this is
implemented in a pan- and core-genome plot (Figure 7) where sequences are compared using BLAST and the
50/50% cutoff described above. As the clusters grow to more than two members, single linkage clustering is
used to assign a new sequence to a group. The program performing this analysis is called pancoreplot and

21

the input is a tab separated text file representing a number of FASTA files containing amino acid sequences.
For the first genome, the pan and core are identical, and the core becomes smaller with the addition of a
second genome, as genes in this pool now need to be found in both genomes. If a gene from the core is
not found in a new genome it is removed from the core, and is then only part of the pan-genome. The
pan-genome is the entire gene pool and as such includes the core genome. The order of the genomes can
change the course of the graph, but the final shared gene pool (core and pan-genome) will be the same.

13.1 Pan- and core-genomes plot

The algorithm is dependent on BLAST and has been implemented in the program pancoreplot. First we
construct an input file for the pancoreplot program, note that is is the number one in the ls command
and a pipe character before the gawk command.

1ls -1 *.fsa | gawk '{print $1 "\t" $1}' > pancore.list

Take a look at the file and note that the look of it (cat, less, head, tail). The first column will become
the name in the plot image. You can freely edit this column using the texteditor (mousepad). The second
column, separated by tab, is the filename and must NOT be edited. This program runs a series of BLAST
comparisons using the blastp program and will take time.

1pancoreplot -keep blastOutPut pancore.list > pancoreplot.ps

13.2 Extract subset genes from pan and core genome plot

This procedure outputs the genes/gene families in common or complementary between genomes in a coreplot.
The directory argument must be of the type created as temporary directory by the coregenome script.
If -o is unspecified (the default), the program will print one representative for each gene family, selected
somewhat randomly. Due to speed issues, the program tries to extract the genes from as few genomes as
possible. If -o is used, all members of the relevant gene families will be extracted from the genomes specified.
Genomes must be specified by their number in the order displayed on the coreplot (because that is how they
are named in the coregenome script). Individual values can be separated by commas, while ranges can be
specified using ’:’ or ’-’. The final value in a range can be omitted, letting the range terminate at the
last genome in the set (or, if -l was specified, whatever genome was given there). The various options can
be specified several times and will be interpreted as a request for several core genomes simultaneously, one
from each subset indicated. If neither -u nor -i is specified, the default is to select the intersection (i.e. core
gene families) of all genomes up to and including the last genome in the set (or, if -l was specified, whatever
genome was given there).

-c or -cu or –complementary: If set, output only from gene families which are complementary to (i.e.
not present in) the union of these genomes.

-ci or –compinter: If set, output only from gene families which are complementary to the intersection of
these genomes - i.e. not present in the core of these genomes.

22

-d or –dispensable: If set, reverses the outputting behavior so that genes formerly to be outputted are
discarded and the genes which would normally have been discarded are instead outputted. The option
is named for its ability to output the dispensable/auxiliary genes instead of the core genes.

-i or –intersection: Find intersecting (i.e. common) gene families between these genomes.
Specifying both -i and -u is valid, but if the sets overlap, then those genes obeying both restrictions
will be extracted twice. This is considered a feature and not a bug :-).

-l or –last: The index of the last organism from the core genome plot to include in the calculation of the
core genome. Defaults to the last organism in the plot.

-o or –organisms: The index of the organisms for which to output the genes. If specified the program
outputs all genes from selected gene families and specified organism(s).
If unspecified, the program will print one representative for each gene family, selected somewhat ran-
domly. Due to speed issues, the program tries to extract the genes from as few genomes as possible.

-s or –slack: Number of genomes a gene is allowed to be missing from and still be considered part of the
core genome. This would normally only be set if the slack option was used with the pancoreplot

script when the input directory was created, and then only to the value used there.

-u or –union Find the union of gene families (i.e. all genes) from these genomes. Specifying both -i and
-u is valid, but if the sets overlap, then those genes obeying both restrictions will be extracted twice.
This is considered a feature and not a bug :-).

Examples:

1ProgName -i 1:3 ,5:7 [Directory]
2# Gives you the core gene families of genomes 1, 2, 3, 5, 6, and 7.
3
4ProgName -i 1: [Directory]
5# Gives the core gene families of all genomes in the set. This is actually the default , used if no

options are given.
6
7ProgName -i 1,3:5 -c 6: [Directory]
8# Gives the core gene families of genomes 1, 3, 4 and 5 which are not present in any of the genomes

from 6 and on to the last.
9# In this command , genome 2 is not considered at all.
10
11ProgName -i 1:3 -i 5:7 [Directory]
12# Gives the core genome of organisms 1, 2 and 3 as well as the core genome of 5, 6 and 7.
13# This is a larger set different from '-i 1:3,5:7' above.
14
15ProgName -u 1:5 -ci 7:9 -ci 8:10 [Directory]
16# Gives the part of the pan -genome of organisms 1 through 5 which is neither in the core genome of 7, 8

and 9 or in the core genome of 8, 9 and 10. Yes , subsets can overlap.

13.3 Gene frequency plot from a pan-core genome output

Before performing this analysis you must read section 13.1 on pan- and core-genome construction. Find
BLAST output reports from pan-core genome plot and locate the last group file (group_lastX.dat).
Run following command in the Terminal:

1# S y n t a x

23

2gawk '{ pr in t NF−2} ' group_<lastX >.dat | gawk '{ arr [$1]++} END { f o r (i in ar r) p r in t i , a r r [i] } ' | s o r t −n > f r e c . txt
3# E x a m p l e

4gawk '{ pr in t NF−2} ' group_3 . dat | gawk '{ arr [$1]++} END { f o r (i in ar r) p r in t i , a r r [i] } ' | s o r t −n > f r e c . txt

Start R
Read in file:

1frec <- read.table("/username/path/frec.txt", sep=" ", dec=",") # Syntax
2frec <- read.table("/home/student/Desktop/frec.txt", sep=" ", dec=",") # Example

Create plot:

1# R allows you to run one long command like the following
2barplot(frec$V2 , main="Gene frequency",
3xlab="Gene occurrence count , genes can be found multiple times in one genome",
4ylab="Frequency of gene count , how often does a gene get counted x times",
5ylim=c(0,max(frec$V2)*1.1)) # Command finished

Save plot:

1dev.print(pdf , file = "/username/path/frec.pdf", width = 15, height =8) # Syntax
2dev.print(pdf , file = "/home/student/Desktop/frec.pdf", width = 15, height =8) # Example

14 Tips and Tricks

14.1 Remove FASTA entries with no sequence

1for x in *. proteins.fsa
2do saco_convert -I Fasta -O tab \texttt{x > \texttt{x.tab
3sed -r '/\t\t\t/d' \texttt{x.tab > \texttt{x.temp.tab
4saco_convert -I tab -O Fasta \texttt{x.temp.tab > \texttt{x
5rm *tab
6end

14.2 Modify names in BLAST matrix *.ps file

14.2.1 HASH lines

If the matrix has a line for each organism saying something like

1(HASH \(0 x954dba8 \)) -45 rotate dup stringwidth pop neg 0 rmoveto show 45 rotate

A Post script file is actually a text file that gets interpreted as a picture. You can open the *.ps file in the
text editor an see what it looks like. To remove the HASH lines from the picture, we must remove a part of
the text in the file. The entire block must be deleted for each genome for the lines to disappear.

1183.497474683058 ux 111.639610306789 uy moveto
2(HASH \(0 x954dba8 \)) -45 rotate dup stringwidth pop neg 0 rmoveto show 45 rotate
3newpath

Fortunately, one commandline can do this for us. This can be done for all entries in the *.ps file as follows:

1awk '/HASH/{c=1; next} c--<0 && p{print p} {p=$0} END{print p} ' test.ps > new.ps

24

14.2.2 Bounding box

If the names of the organisms reach outside the border of the picture, change the numbers in the BOUNDING
BOX field of the *.ps file. Each of these numbers correspond to different points in a coordinate system:

1%% BoundingBox: 0 0 2212 1110
2%% BoundingBox: llx lly urx ury

The numbers correspond to the size of the picture, and are coordinates llx lly urx ury (lower left corner
(x,y), upper right corner (x,y)). Change the coordinates, save the *.ps file and click the file again.

14.3 Convert *.ps file to *.pdf

To use your figures in a paper or presentation, it is handy to have the picture as a *.pdf. For this you can
use the program ps2pdf. The syntax is simple:

1ps2pdf -dEPSCrop file.ps file.pdf

You might experience that the *.pdf only contains part of the figure. If this is the case, right click the *.ps
file and open it in mousepad. Find a line that looks something like %%BoundingBox: 0 0 2212 1110. The
numbers correspond to the size of the picture, and are coordinates llx lly urx ury (lower left corner (x,y),
upper right corner (x,y)). Change the coordinates, save the *.ps file and run the ps2pdf again. It takes a
couple of tries the first time, but then it is easy enough to set the size of the picture.

14.4 Rename files

Files with wrong ending can be renamed the following type of loop:

1for x in *gbk.fna
2do
3newx=`echo $x | sed "s/.gbk.fna/.fna/"`
4mv $x $newx
5done

Or another example:

1for x in *gbk.proteins.fsa
2do
3newx=`echo $x | sed "s/.gbk.proteins.fsa/. proteins.fsa/"`
4mv $x $newx
5done

14.5 Delete empty files

Always list the files before using the removing command so you do not delete fields unintentionally.

1find . -type f -empty # Display empty files
2find . -type f -empty -exec rm {} \; # Remove empty files

25

	VirtualBox and CMG-Biotools
	Virtual computer setup
	Create a virtual computer on your local hard-drive.
	Setting up a shared folder between the host and virtual computer

	Introduction to Unix
	Some useful concepts
	A brief overview of the command line shell
	Directories and the file system
	Working with files
	Reading the contents of text files
	Invoking executables
	Redirection and pipes
	File system permissions

	Introduction
	Command syntax
	Example data
	GenBank files
	FASTA files
	for loops

	Download genomes
	Re-name GenBank files from numbers to organism names

	Genome atlas
	Extract DNA from GenBank
	Calculate basic statistics
	Identify rRNA sequences in DNA
	Multiple sequence alignment of selected 16S rRNA sequences
	Construct phylogenetic tree from 16S rRNA alignment.

	Proteomes
	Extract genes and proteins from GenBank
	Genefinding

	Amino acid and codon usage
	Comparing amino acid and codon usage

	Protein BLAST matrix
	Pan- and core-genomes
	Pan- and core-genomes plot
	Extract subset genes from pan and core genome plot
	Gene frequency plot from a pan-core genome output

	Tips and Tricks
	Remove FASTA entries with no sequence
	Modify names in BLAST matrix *.ps file
	HASH lines
	Bounding box

	Convert *.ps file to *.pdf
	Rename files
	Delete empty files

