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Summary

DNA microarrays have been used extensively to identify cell cycle regulated genes
in yeast, however, the overlap in the genes identified is surprisingly small. We show
that certain protein features can be used to distinguish cell cycle regulated genes
from other genes with high confidence (features include protein phosphorylation,
glycosylation, subcellular location and instability/degradation). We demonstrate
that co-expressed, periodic genes encode proteins which share combinations of fea-
tures, and provide an overview of the proteome dynamics during the cycle. A large
set of novel putative cell cycle regulated proteins were identified, many of which
presently have no known function.
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Training set

Training of neural networks for classification requires a set of examples with
representatives of each category. In this study only two categories were used,
namely “cell cycle regulated protein” and “non cell cycle regulated protein”.
Selection of training examples was based on a periodicity analysis of the publicly
available DNA microarray data sets compiled by Spellman et al.2, 1, to identify
periodicly as well as non periodicly expressed genes/proteins.

A Fourier scoring system inspired by Spellman et al.2 was used, where each gene i is
assigned a score Di based on its temporal expression profile during the experiment,
with cell cycle frequency ω = 2π

T
:

Di =
√

(
∑

t
sin(ωt)xi(t))2 + (

∑

t
cos(ωt)xi(t))2

The cell cycle periods, T , estimated by Zhao et al.3 were used (58 min for the α-
factor experiment, 115 min for the Cdc15 experiment and 85 min for the Cdc28
experiment), and a combined Fourier score, Fi, was computed as:

Fi =
(Di,α + 0.8 · Di,cdc15 + Di,cdc28)
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The contribution from the Cdc15 experiment was scaled in the combined score,
because this experiment covers 2.5 cell cycles, whereas the α-factor and Cdc28
experiments cover only two (using the Zhao et al.3 estimates).

Figure 1A shows the genome-wide distribution of combined Fourier scores. From
this we selected the lowest scoring 556 genes (thresholding at 0.75) to use as our set
of “non cell cycle regulated proteins”, whose genes display no periodic regulation
during the cell cycle.

The discrepancies between DNA microarray studies discussed in the paper underlines
the difficulties in selecting a high confidence data set of periodicly expressed proteins.
To identify a conservative threshold, we used the 104 known periodic genes listed
by Spellman et al.2 to estimate the overall number of periodic transcripts:

Nestimated =
Nincluded

Mincluded/Mtotal

The estimated number of periodic transcripts, Nestimated, was based on the number
of genes that score above a certain threshold, Nincluded, divided by the fraction of
the 104 known genes included above a that threshold, Mincluded/Mtotal. Assuming
that the periodicity score distribution of the known genes is representative of the
entire group of periodic genes, this estimate would be expected to remain constant,
so long as the threshold is set high enough to exclude false positives4.
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Figure 1: A) Genome-wide distribution of Fourier scores. B) Estimated number of periodic tran-
scripts as a function of combined Fourier score threshold. The red line indicates our cutoff. At
high Fourier scores large fluctuations are seen, probably due to the poor statistic foundation (very
few genes are included).

The estimate is plotted in Figure 1B and displays a plateau at high thresholds,
with an exponential rise towards lower values. Based on this, we applied our most
conservative threshold at the end of the plateau (at 6.0) including 115 significantly
periodic genes, which most likely include no false positives. To ensure not only
periodicity, but also consistent behavior over multiple cycle, we required the Pearson
correlation coefficient between the expression profiles of the first and the second
cycle to be above 0.4, thereby excluding 18 genes. This procedure resulted in a high
confidence set of 97 cell cycle proteins, encoded by genes with strongly periodic and
self-consistent expression profiles over three DNA microarray experiments.

The sets of ”periodic” and ”non-periodic” genes/proteins are available for download
from the website, www.cbs.dtu.dk/cellcycle
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Neural Network Training

Protein features were derived for each of the proteins in our data set (see above)
resulting in a set of 645 examples of ”cell cycle regulated proteins” and ”non cell
cycle regulated proteins” (8 proteins were discarded due to incomplete feature
predictions). The protein sequences (translated ORFs) corresponding to the entire
S. cerevisiae genome were downloaded from the Saccharomyces Genome Database

(SGD), http://genome-www.stanford.edu/Saccharomyces/. Table 1 summarizes
the features explored in this project.

Feature Tool/program Reference

Ser/Thr Phosphorylation NetPhos (Blom et al.5)
www.cbs.dtu.dk/services/NetPhos/

Tyr Phosphorylation NetPhos (Blom et al.5)
www.cbs.dtu.dk/services/NetPhos/

PEST sequences PESTfind (Reichsteiner and Rogers6)
www.at.embnet.org/embnet/tools/bio/PESTfind/

Signal Peptides SignalP (Nielsen et al.7)
www.cbs.dtu.dk/services/SignalP/

N-linked Glycosylation NetNGlyc (Gupta et al., manuscript in preparation)
www.cbs.dtu.dk/services/NetNGlyc/

O-GlcNAc Glycosylation YinOYang (Gupta et al., manuscript in preparation)
www.cbs.dtu.dk/services/YinOYang/

O-GalNAc Glycosylation NetOGlyc (Hansen et al.8)
www.cbs.dtu.dk/services/NetOGlyc/

Transmembrane helices TMHMM (Krogh et al.9)
www.cbs.dtu.dk/services/TMHMM/

Subcellular Localization PSORT (Nakai and Horton10)
psort.nibb.ac.jp/

Isoelectric Point ProtParam www.expasy.ch/tools/protparam.html

Instability Index ProtParam www.expasy.ch/tools/protparam.html

Extinction Coefficient ProtParam www.expasy.ch/tools/protparam.html

GRAVY ProtParam www.expasy.ch/tools/protparam.html

Aliphatic Index ProtParam www.expasy.ch/tools/protparam.html

Amino Acid Composition ProtParam www.expasy.ch/tools/protparam.html

Protein Sequence Length ProtParam www.expasy.ch/tools/protparam.html

Number of pos. residues ProtParam www.expasy.ch/tools/protparam.html

Number of neg. residues ProtParam www.expasy.ch/tools/protparam.html

Table 1: Protein features explored individually and in combination in this work.
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Isoelectric point, instability index, extinction coefficient, GRAVY and aliphatic
index were all represented by a single value for the entire protein. Subcellular
localization contains eleven categories with a probability for each, i.e. an eleven
dimensional input vector for each protein. Similarly, the amino acid composition
contained 21 input values — one for each amino acid. Other features are residue
specific predictions, where the algorithm outputs a prediction for each amino acid in
the protein. We summed the predictions and devided by the number of amino acids
in the sequence, to avoid the length dependence. This was done for phosphorylation,
glycosylation, PEST sequences, signal peptides and transmembrane helixes. Pre-
dicted and calculated features were obtained for all translated ORFs in the genome,
as desribed above. For each feature we substracted the genome-wide mean and di-
vided by the standard deviation to bring all input data in the same numerical range.

Three-fold cross validation was used (see Figure 2) to divide the data set in three
different ways, each with 430 sequences for training and 215 for independent evalu-
ation of the classification performance. Consequently, three networks were trained
for each input combination and the classification performance was evaluated as the
average Matthews correlation coefficient11 of the three test sets (in such a way that
subset B was only used to test the network trained on subsets A+C, subset A only
used to test the one trained on subset B+C, etc., according to Figure 2).

Figure 2: Schematic illustration of the three-fold cross validation principle.

The training was performed in an iterative fashion (similar to that of Jensen et

al.12), selecting for the most discriminative features. The features that proved most
discriminative in combinations of two were used to construct new combinations of
three features, from which the best were selected to form combinations of four,
etc. stopping at combinations of six input features (note that some features were
encoded as multiple inputs, such as the 11 categories of the subcellular location
predictor PSORT). The iteration was continued with the following procedure, until
no improvements were possible:

• Optimize the number of hidden neurons

• Test all input combinations obtainable by adding or removing a feature

• Pick the best new input combinations

• Repeat
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This iterative selection approach resulted in a number of input combinations and
network architectures from which the five best were selected. In the paper we
have reported four unique input combinations, because two of the five use identical
features, but different network architectures. Each input combination represents
three independently trained and tested neural networks (three-fold cross validation)
and all 15 networks were combined into a neural network ensemble for improved
performance. To put equal weight on all networks, the distributions of test set scores
were ranked and used as conversion tables for output from individual networks. We
then simply computed the average of the rank converted output scores from all 15
networks. Hence all networks contributed equally to the final scores.
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Figure 3: ROC-curve of the performance of each network and the ensemble, plotted along with the
Matthews correlation coefficient11. The ensemble outperforms all the individual networks.

Figure 3 contains six ROC-curves, each showing the sensitivity versus the rate of
false positives (See paper for definition of sensitivity). From the three independent
tests a curve was constructed for each individual input combination (four different
combinations, two with different network architecture). Similarly, a curve was con-
structed for the entire ensemble. It should be noted that this was done such that
no network was tested on sequences also used to train that network. As can be seen
in Figure 3, the ensemble outperforms all of the individual input neural networks.
This is a well known phenomenon with neural networks, that juries, ensembles or
averaging of many independently trained networks improve the performance. Figure
3 also contains the Matthews correlation coefficient as a function of the sensitivity.
An important conclusion from this plot is that in the regions of low false positive
rate, the method also has a low sensitivity. The method should therefore be ex-
pected to miss a considerable number of cell cycle regulated proteins. The output
should thus be used to support other evidence or to guide new experiments.

6



The ensemble of trained neural networks was used to predict cell cycle regulated
proteins in the entire S. cerevisiae proteome (set of all translated ORFs). However,
as stated in the paper, proteins contained in the training set or considered “spurious”
or “very hypothetical” by Wood et al.13 were removed from the predictions. Each
protein was assigned a score between 0 and 1, where high scores are indicative of a
cell cycle role for the protein, whereas low scores are less conclusive.
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Identification of weakly expressed genes

We examined the intensity distributions of different sets of proposed cell cycle reg-
ulated genes by computing the median fluorescence intensity of each gene in each
of the three experiments (α-factor, Cdc28 and Cdc15). The data of Cho et al.1 was
used directly, whereas the Spellman et al.2 raw data was normalized with the non-
linear Q-spline method developed by Workman et al.14. Median intensities were
converted into rank statistics for every experiment and the median rank over all
three experiments was used as measure of median intensity.
Figure 4 shows distributions of the estimated median intensities for the periodic
genes identified in the three microarray studies, genes suggested by our ensemble and
the entire S. cerevisiae genome. From all of these sets we removed genes annotated
by Wood et al. as “spurious” or “very hypothetical”. The distributions were thus
based on 400 genes from Cho et al.1, 734 genes from Spellman et al.2, 246 genes
from Zhao et al.3, the 500 highest scoring genes suggested by our neural network
ensemble (here we included training examples), and 5,538 genes representing the S.

cerevisiae genome distribution.
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Figure 4: The distribution of ranked intensities for different studies. Each distribution has been
normalized to an area of one.

Figure 4 demonstrates that all three sets of microarray identified genes contain fewer
genes with low median intensity compared to both the genome distribution and our
feature-based machine-learning method. These data even suggest that the fraction
of weakly expressed genes identified in the studies drops with the stringency of the
inclusion threshold, since the study that applies the most conservative inclusion
criteria (Zhao et al.3) also identifies the lowest fraction of weakly expressed genes.
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Temporal variation in protein features

To investigate temporal dynamics in feature space during the cell cycle we mapped
the proteins identified with our method to time points in the cell cycle, based on the
time of maximal expression of their encoding genes. The three publicly available
cell cycle experiments (α-factor, Cdc28 and Cdc15) were used to determine the time
of maximal expression of the identified cell cycle genes. The time series data was
normalized within each experiment with the cycling times estimated by Zhao et al.3

(58 min for the α-factor experiment, 115 min for the Cdc15 experiment and 85 min
for the Cdc28 experiment) to bring the data on a comparable time scale. Within each
experiment, the time of maximal expression was compared between two consecutive
cycles, averaging the two time points if the time difference between them were less
than 20% of the cell cycle period. In this way, a peak time was computed for the
self-consistent genes in each experiment. If the gene did not meet these criteria, no
value was computed for the gene in that experiment. The three experiments were
then aligned by comparing the distribution of peak times for 46 genes known to peak
in the G1-phase2, and furthermore shifted to set zero time to the suspected time of
cell devision (G1 entry). The three data transformations could be summarized as:

Tα =
tα
58

− 0.146 TCdc28 =
tCdc28

85
− 0.018 TCdc15 =

tCdc15

115
− 0.099

where tα is the number of minutes in the α-factor experiment, and Tα is time on the
normalized and aligned timescale (between 0 and 1). The peak time thus indicates
how many percent into the cell cycle a given cell cycle gene is maximally expressed.
For every gene, the peak times were compared between those experiments where a
value could be assigned (see above), and averaged only if the difference between them
was less than 20% of the cell cycle period. Genes that did not meet this criteria were
considered to show inconsistency in their expression and no final average peak time

was reported for these genes. Average peak time assignment was attempted for the
500 highest scoring proteins identified by the neural network ensemble (including
those of the training examples that score high). However, proteins encoded by
genes displaying essentially no periodicity in any of the experiments (Fourier score
below 1.5) were discarded to avoid applying the mapping procedure to noisy data.
309 of these 500 proteins met the criteria for consistency and periodicity and were
assigned a unique, averaged peak time (based on one, two or three independent cell
cycle experiments).
The cell cycle was divided into 100 time points (or percent) and the strength of a
particular protein feature was calculated at each of the time points by averaging over
the proteins expressed in a window of ± 5 time points. The strengths were visual-
ized with respect to their deviation from the average value for all 309 periodically
expressed proteins, using one color for values higher than the average and another
color for lower values. The extremes of the color scale were set at ± two standard
deviations. The temporal variation in the nine most relevant protein features is
illustrated in Figure 5, where each circle corresponds to a feature. Zero time is at
the top of the “clock”, at the time of cell devision, i.e. entry into G1 phase.
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Figure 5: Feature variation during the cell cycle. The temporal variation in nine selected protein
features during the cell cycle, with zero time (at the top of the plot) corresponding to the presumed
time of cell devision (M/G1 transition). The color scales correspond to ± two standard deviations
from the cell cycle average. The concentric feature circles correspond to: isoelectric point, nuclear
and extracellular localization predictions10, PEST regions6, instability index15, N-linked glycosyla-
tion potential, O-GalNAc glycosylation potential8, serine/threonine- and tyrosine phosphorylation
potential5. The presumed positions of the four cell cycle phases: G1, S, G2 and M are marked.
Also depicted are known cell cycle transcriptional activators (marked in blue), positioned at the
time where they are reported to function16, along with nine cyclins (marked in orange), placed at
the time where their genes are maximally expressed. Most of the cyclins are believed to activate
Cdc28 kinase activity when expressed, but it should be noted that Clb5p and Clb6p are kept inactive
in G1 phase by the inhibitor protein Sic1p17, 18.
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