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Abstract

In this supplementary information, we describe in detail the analyses presented in the main
paper. We describe how the raw data was processed and analyzed and how the benchmark
sets were constructed. We advise to also visit our website: http://www.cbs.dtu.dk/cellcycle,
where lists and data is made available for download.

Introduction

This document contain additional information and
details regarding the papaer entitled “The More the
Merrier: Comparative Analysis of Microarray Studies
on Cell Cycle-Regulated Genes in Fission Yeast“.

About the gene expression data

Rustici et al.

Rustici et al. (2004) performed five experiments in
which samples were taken from synchrounsly grow-
ing cultures, labeled and hybridized to cDNA ar-
rays along with sample from a reference asynchroun-
sly growing culture. Three experiments were per-
formed using centrifugal elutriation, where cells of
similar size were isolated and grown. Two exper-
iments were performed using a cdc25-temperature
sensitive mutant that arrested the cells at high tem-
perature. By lowering the temperature a synchroun-
sly growning culture was obtain. In the three elu-
triation experiments, samples were taken at 15 min-
utes interval for 285 minutes, while samples were
taken at 15 minutes interval for 270 minutes and
255 minutes in the two cdc25 experiments. A
technical replicate of one cdc25-arrest based exper-
iment was performed using dye-swapping. The data
were normalized and the signal ratio between syn-
chonized and unsynchronized were reported. These
datasets can be downloaded from the authors web-
page http://www.sanger.ac.uk/PostGenomics/S
pombe/projects/cellcycle/ (Rustici et al., 2004).
Rustici et al. (2004) normalizeed the expression pro-
file to an average log ratio of zero and calculated a

Fourier score for each gene. Based on random shuf-
fling of data points within an expression profile, they
estimated the propability for the oscillation to occur
by random. They selected genes with a p-value below
0.01 and filtered out genes with only subtle changes
in expression. Based on visual inspection of the ex-
pression profiles for the remainging genes a set of 407
genes were identified as cell cycle regulated.

Peng et al.

Peng et al. (2005) performed two experiments, one
based on centrifugal elutriation and one based on a
cdc25-temperature sensitive mutant. In these exper-
iments, samples were taken at 10 minutes interval
for 310 minutes and 360 minutes for the elutriation-
and cdc25 mutant based experiment, respectively.
The samples were hybridized to cDNA micorarray
and an asynchrously growing culture was used as
reference. The log-signal ratio between sample and
reference was reported. Each array was normal-
ized to a median log-ratio of zero and each ex-
pression profile subjected to Gaussian smoothing.
Afterwards, the time series was subjected to local
zero-mean normalization, i.e. at each time point
the average expression for a cell cycle was sub-
tracted. These data can be downloaded from the
Journal homepage: http://www.molbiolcell.org/
cgi/content/full/E04-04-0299/DC1.
Genes were ranked based on a scoring scheme inspired
by Spellman et al. (1998) (see Peng et al. (2005) for
details). Based on random shuffling of data and eti-
mation of the false discovery rate a set of 747 genes
were found to be cell cycle regulated.
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Oliva et al.

Oliva et al. (2005) made two experiments based on
centrifugal elutriation and one based on a tempera-
ture sensitive cdc25-mutant. Samples were taken for
515 minutes at 10 minute intervals for the cdc25 ex-
periment. Samples were taken for 489 minutes at
15 minute interval for one elutriation experiment,
whereas samples were taken at 8/10 minutes inter-
val for 406 minutes in the other. In all three ex-
periments samples were hybridized to cDNA with an
asynchrousnly growing culutre as reference. Stan-
dard linear normalization of total intensity was per-
formed, except that the bottom 4000 regulated genes
were normalized separately to avoid weak periodic-
ity being induced by the normalization due to the
strongly regulated genes. These data can be down-
loaded from http://publications.redgreengene.
com/oliva plos 2005/. For each experiment, a
Fourier score was calculated. The profile of each gene
was shuffled to produce randomized data. The ob-
served score was compared to the distribution of ran-
dom scores, and the number of standard deviations
that the observed score was higher than the mean of
random scores was reported as a z-score. These were
combined across experiments and converted into p-
values.

Reanalyzing the data

All 10 time-series experiments report the ratio or
log-ratio of sample to control, i.e. signal intensity in
synchronized cells compared to unsynchronized cells.
The ratios reported by Rustici et al. (2004) were
converted into log-ratios and in each time-series we
centered the profiles around the mean by subtracting
(in log-space) the mean expression value (this makes
data analysis easier).

Identifying the interdivision time

For S. pombe, a set of 33 genes previously identified as
periodic in small scale experiments and in the study
by Rustici et al. (2004) were used to identify the in-
terdivision time, i.e. the time it takes for a cell to go
through the cell cycle. For each gene, a Fourier score
was calculated:

Fi =

√(∑
t

sin(ωt) · xi(t)
)2

+
(∑

t

cos(ωt) · xi(t)
)2

where ω = 2·π
T and T is the interdivision time. The

optimal interdivision time was found for each gene
as the interdivision time that gave rise to the highest
Fourier score. The distribution of the optimal interdi-
vision times for the 33 previously identified cell cycle

regulated genes were used to find the best interdivi-
sion time for each experiment.

Identifying periodically expressed tran-
scripts

To identify periodically expressed transcripts, we
then applied the permutation-based computational
method described by de Lichtenberg et al. (2005)
to each experiment individually, as well as to all
data in combination. This method combines two
permutation-based statistical tests in a combined
score. The two tests are:

Statistical tests for regulation

The standard deviation can be easily calculated for
each log-ratio profile, giving a measure of the spread
of the samples around the mean. Heavily regu-
lated genes will thus have large standard deviations,
whereas genes without significant regulation display
little deviation from the mean. To test for the sig-
nificance of regulation, we therefore compare the ob-
served standard deviation for each expression pro-
file to a randomly generated background distribution.
1,000,000 random profiles were constructed by select-
ing at each time point the log-ratio from a randomly
chosen gene. A p-value for regulation was calculated
as the fraction of the simulated profiles with standard
deviations equal to or larger than that observed for
the real expression profile.

Statistical tests for periodicity

To estimate a p-value for periodicity, we compared
the Fourier score of the observed gene expression pro-
file for each gene to those of random permutations of
the same gene. For each gene, i, a Fourier score, Fi,
was computed as

Fi =

√(∑
t

sin(ωt) · xi(t)
)2

+
(∑

t

cos(ωt) · xi(t)
)2

where ω = 2·π
T and T is the interdivision time. Sim-

ilarly, scores were calculated for 1,000,000 artificial
profiles constructed by random shuffling of the data
points within the expression profile of the gene in
question. The p-value for periodicity was calculated
as the fraction of artificial profiles with Fourier scores
equal to or larger than that observed for the real ex-
pression profile.
The p-value for regulation is thus a comparison be-
tween individual genes and the global distribution,
whereas the p-value for periodicity is a comparison
involving only data from the gene in question.
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Combined tests for regulation and periodicity

For each gene, a combined p-value of regulation was
calculated by multiplying the separate p-values of
regulation from each of the experiments. Analo-
gously, a combined p-value of periodicity was calcu-
lated. Subsequently, the p-value of regulation and
p-value of periodicity were multiplied to obtain the
total p-value. An undesirable feature of the total p-
value is that it may become very low (i.e. highly sig-
nificant) due to only one of the tests. Genes that are
strongly regulated but not periodic (or vice versa) will
thus receive good scores. To address this, we multiply
the total p-value with two penalty terms that weight
down genes that are either not significantly regulated
or not significantly periodic. The final score used for
ranking is:

ptotal ·
[
1 +

(pregulation

0.001

)2]
·
[
1 +

(pperiodicity

0.001

)2]
The calculation was done for each experiment sepa-
rately as well as for the combined experiments.

Avoiding overestimation

The statistical tests assume independence between
neighboring measurement in an experiment - an as-
sumption that is not entirely fulfilled in some data
sets. To avoid any overestimation of the significance
of the p-values, we therefore normalized all p-values
within each data set by the median p-value (prior).
This corresponds to assuming that there is no signifi-
cant regulation or periodicity of the average gene. For
the experiments from Rustici et al. (2004) and Oliva
et al. (2005), these prior p-values were between 0.07
and 0.24 for periodicity and between 0.7 and 0.8 for
regulation. However, for the two experiments from
Peng et al. (2005), the prior p-value for periodicity
was close to our sampling resolution (10−6). We spec-
ulate that this may result from a very high correlation
between neighboring time-points, and therefore split
the time-series into two, calculating our statistics for
each and then combining the results. As expected,
this lowered the prior considerably and we therefore
believe our analysis of the Peng et al. (2005) data to
be valid and comparable to the rest of the data.

Assigning the time of peak expression

Since we approximate each expression profile by a
sine wave, the time of peak expression for a gene in
a single experiment is trivially defined as the time
where the sine wave is maximal. We refer to this
as the peak time(de Lichtenberg et al., 2005). Due
to differences in experimental conditions, the time
it takes the cell to complete a cycle (the interdi-
vision time) varies greatly between elutriation and
cdc25 experiments. In order to compare the timing

of peak expression across experiments, we therefore
transformed the time-scales from minutes to percent
of the cell cycle in each experiment by dividing with
the interdivision time.
Subsequently, differences in release point of the syn-
chronization techniques were corrected for by aligning
the time scales of the ten experiments. The optimal
offsets for the experiments were determined by min-
imizing an error function, E1 =

∑
i E1i, that mea-

sures the disagreement in the time of peak expression
of the same gene in different experiments:

E1i =
∑
exp

(wexp1
i wexp2

i dist(texp1
i , texp2

i )2)

As weights the negative logarithm of the respective
total p-values were used. The function dist refers to
the shortest possible distance between two points on
a circle. The error function was minimized using a
simulated annealing algorithm. To reduce computa-
tion time, each experiment was shifted before run-
ning the simulated annealing algorithm, so time zero
corresponded to the peak in distribution of genes an-
notated with a M/G1-phase related function (Rustici
et al., 2004). The simulated annealing algorithm was
then executed ten times, and the shifts from the run
that gave rise to the lowest error function was used
to align the experiments. The shifts can be seen in
Table .

Experiment Relative off set of M/G1

Rustici Cdc25-1 71
Rustici Cdc25-2 63
Rustici Elu-1 78
Rustici Elu-2 69
Rustici Elu-3 57
Oliva Cdc25 10
Oliva Elu-1 47
Oliva Elu-2 4
Peng Cdc25 55
Peng Elu 46

Table 1: The shifts in percent of division time for each
experiment relative to M/G1 phase

Combining peak times from different experiments
into one is a non-trivial task, since the assignment
should not be trusted in those experiments where
the expression profile is not sufficiently periodic. To
compensate for this, we weighted the individual peak
times when computing the global, combined peak
time. For each gene, a combined peak time (ti) was
calculated from the individual peak times by mini-
mizing the following error function:

E2i(ti) =
∑

dist(texp1
i , ti)2w

exp1
i /W

where W =
∑

exp wexp
i and the weights are defined

as in E1i.
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Distributions of peaktimes was used to aid the vi-
sual inspection of Figure 6, where distributions of at
least 75 % of the members in each group (Histones,
ribosome biogenesis (Tanay et al., 2005), cytokinesis
(Ashburner et al., 2000)) were included in the figure
as vertical lines.

Benchmark sets

B1 40 genes previously identified as periodically ex-
pressed in small scale experiments. The set en-
compasses the 35 genes used by Rustici et al.
(2004) adding five genes that have recently
been reported to be cell cycle-regulated (Alonso-
Nunez et al., 2005) and the gene uvi31. One gene
was removed as recent small scale studies could
not conferm the gene as periodically expressed.

B2 Genes whose promoters are bound by at least one
of the transcription factors cdc10, res1, res2 or
fkh2 based on ChIP-chip experiments performed
by Brian Wilhelm (unpublished data). In case of
divergently transcribed genes, where the binding
is observed between the genes, both are included
in the set. To obtain a benchmark set that is
independent of B1 (and all other sets), we re-
moved all genes included in B1 (50). The result-
ing benchmark set, B2, consists of 352 genes of
which many should be expected to be cell cycle
regulated, since their promoters are associated
with known stage specific cell cycle transcription
factors.

B3 Genes that are differentially regulated in re-
sponse to knock-out or over-expression of
ace2, cdc10, sep1, as well as in a hydrox-
yurea block experiment (Rustici et al., 2004).
Details on these experiments can be found
at http://www.sanger.ac.uk/PostGenomics/
S pombe/projects/cellcycle. To avoid over-
lap between the benchmark sets all genes already
contained in B1 and B2 were removed. This left
188 genes, of which many should be expected
to be transcriptionally regulated during the cell
cycle.

Systematic gene names

Gene names in each experiments, previously pro-
posed lists of cell cycle regulated genes, and bench-
mark sets were converted into systematic names from
geneDB (Hertz-Fowler et al., 2004) to allow for sys-
tematic comparison and benchmarking. The gene
name mapping file was downloaded from geneDB and
synonyms gene names were changed into the corre-
sponding systematic name. In the case were there

were multiple expression profiles for the same gene in
an experiment, the best score was reported. In bench-
mark sets and lists of previously proposed genes,
genes were only included if a systematic name from
geneDB could be found.

Avialability

Results and benchmark sets are available at http:
//www.cbs.dtu.dk/cellcycle.
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